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ABSTRACT

The Milky Way Galaxy serves as a laboratory for testing models of galaxy formation.

Discovering the nature of dark matter is often cited as the second most important

problem in astrophysics, preceded only by dark energy. Mapping the structure

and dynamics of the Milky Way Galaxy can tell us how galaxies form, and place

constraints on the properties of dark matter.

We can map the distribution of dark matter in the Milky Way using tidal

streams, collections of stars that have been gravitationally stripped from satellite

dwarf galaxies and globular clusters. By knowing the positions and velocities of

these stars, and assuming they came from a compact source, we can follow them

back in time and constrain the shape of the Milky Way dark matter halo.

This Thesis presents a method that allows us to constrain the parameters of a

static Galactic gravitational potential using the data from any number of tidal debris

streams. The method is tested on simulated tidal streams, and successfully recovers

the original model parameters in most cases. The importance of simultaneously

fitting the measured rotation curve of the Milky Way is explored, and the strengths

and weaknesses of the algorithm are discussed.

The orbit fitting algorithm is applied independently to the Stream of Grillmair

and Dionatos (GD-1), the Orphan Stream, and the Cetus Polar Stream (CPS).

We show that no known globular cluster or dwarf galaxy in the Milky Way has

kinematics consistent with being the progenitor of the GD-1 stream. The Orphan

Stream constrains the Milky Way dark matter halo as having a mass at the low end

of previous measurements, giving a best fit halo speed of vhalo = 73 ± 24 km s−1,

compared to typical values of vhalo ≈ 115 km s−1. A lower halo speed implies a less

massive halo.

The GD-1 and Orphan streams are then fit simultaneously with the Sagittarius

Dwarf Tidal Stream (Sgr), within a triaxial dark matter halo. Results for restricted

triaxial cases are shown to be consistent with previous authors. Simultaneous fits

within an unrestricted triaxial halo (free to rotate in any direction) give flattenings

xiv



qx = 1.33 ± 0.16, qz = 1.52 ± 0.14 and XYZ pitch-roll-yaw Euler orientation angles

of (θ, φ, ψ) = (−50◦ ± 18◦, 86◦ ± 11◦, 1◦ ± 6◦). The best fit halo speed and scale

length are vhalo,t = 126 ± 9 km s−1 and dhalo,t = 22.2 ± 3.3 kpc, respectively. The φ

Euler angle is broadly consistent with that found for the stellar halo by Newberg et

al. (2006). The significance of these orientation angles within the context of Galaxy

formation and evolution are discussed.

Utilizing the orbit fits to the Orphan Stream, a novel technique is presented

to fit the density of F-turnoff stars along the stream utilizing semi-analytic N-body

simulations. Baseline estimates of the mass and scale radius of the Orphan Stream

progenitor are obtained. We discuss the development of a stellar density fitting

algorithm, which is implemented on the Milkyway@home volunteer computing plat-

form.
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CHAPTER 1

INTRODUCTION

1.1 Historical Overview

From the time when mankind first gazed into the night sky and saw the Milky

Way, we have sought to understand its nature, structure, and history. Originally

understood in Chinese culture as the “Silver River,” Uralic cultures as the “Bird’s

Path,” and Japanese culture as the “River of Heaven,” views during antiquity shifted

from predominantely mythological to more physical in nature. The Ancient Greeks

first proposed the Milky Way as being composed of stars, and by a millennium

and a half later, Galileo, Kant, and Herschel had formulated the view of the Milky

Way as a large rotating body of stars similar to our Solar System. It wasn’t until

Curtis (1917), through observations of supernovae in “nebulae,” deduced that they

were much farther from the Sun than originally thought. This transformed “spiral

nebulae” such as M31 into large galaxies, and raised the possibility that the Sun

itself was within a similar structure. This conclusion was reaffirmed by Hubble

(1925), via observations of Cepheid variables in M31.

The advent of infrared and radio surveys have proved decisive in the under-

standing of Milky Way structure. When looking at the Galactic center via optical

telescope, one’s view is obstructed by dust and gas. Infrared surveys are unaffected

by this, and reveal a spherical collection of stars at the center of the Galaxy termed

the Galactic bulge. Within this bulge is a central concentration called the nucleus.

Doppler shift observations of nucleus stars reveal velocities consistent with orbits

around a point mass of 4 × 106 MSun, suggesting a supermassive black hole at the

Galactic center. Additionally, radio surveys reveal stellar overdensities occuring at

regular intervals from the Galactic center. These are understood as spiral arms,

providing evidence that the Milky Way is a spiral galaxy (Matsumoto et al. 1982;

Georgelin, et al. 1976).

While the view of the Milky Way itself was being refined, observations were

also being taken that showed it is not alone in its neighborhood. The Magellanic

1
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Clouds, known since antiquity, were now coming into view as being dwarf galaxies

orbiting the Milky Way. Discoveries of IC10 in 1887, 1 Zwicky 18 in the 1930s, the

Aquarius Dwarf in 1959 led to the view that the Milky Way is host to orbiting dwarf

galaxies.

In the midst of discoveries of Milky Way neighbors, the picture of the Milky

Way itself was still a matter of contention. In the mid-20th century, the paradigm

consisted of a spiral disk and central bulge with the Sun being roughly 8 kiloparsecs

from the Galactic center. The exact value is still controversial. As telescope tech-

nology advanced, a new population of stars above and below the disk was revealed.

At first, a population on the order of 2 kpc above and below the luminous disk

was identified, and termed the “thick disk” (Gilmore & Wyse, 1985). Following

this, observations further out from the Galactic disk revealed another population.

These stars are generally old and unenriched with metallic elements, and are termed

the Galactic stellar halo. It was postulated that the density of stars in the stellar

halo could be fit using a simple power law (e.g. Hawkins, 1984) such as ρ ∝ r−α.

This effort did not prove fruitful as examinations of different areas in the sky led to

different fits for the exponent α. Sophisticated models such as the Bahcall-Soniera

(1980) model were developed, which utilized observations within the solar neighbor-

hood, and a global distribution of matter consisting of an exponential disk and de

Vaucouleurs spheroid. While these models are immensely successful at predicting

various Galactic properties, their assumption of a smooth background precludes any

discussion of Galactic substructure.

This dilemma remained until the development of large scale, multi-color, highly

calibrated, all sky photometric surveys such as the Two-Micron All Sky Survey

and the Sloan Digital Sky Survey, which allowed for large areas of the sky to be

viewed simultaneously. In Figure 1.1 from Newberg et al. (2002), we see the first

detection of large scale substructure in the Milky Way Halo. The overdensities at

(RA, g0) = (30◦, 21) and (RA, g0) = (210◦, 22), which cannot be explained as defects

in a smooth background, are the disrupted remnants of the Sagittarius Dwarf Galaxy

(Ibata et al., 1994).

This discovery shed light on the failures of the previous methods used to fit
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Figure 1.1 Histogram in g0 vs. RA of turnoff stellar density on the celestial equator
from Newberg, et al. (2002). The overdensity at (RA, g0) = (30◦, 21) is the first
detection of the Sagittarius Dwarf (Sgr) tidal tail in F-turnoff stars. The overdensity
between RA = 240◦ and 330◦ is identified as the Galactic stellar halo; the Sgr over-
density cannot be a product of a smooth background component. The overdensity
at (RA, g0) = (210◦, 22) is also a Sgr tidal tail, on the other side of the Galaxy.
The linear overdensity at RA = 229◦ is the globular cluster Palomar 5. The ra-
dial length of this overdensity illustrates the variations of intrinsic brightnesses in
F-turnoff stars, since these stars are all at the same distance from the Sun. Figure
reproduced with permission.
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the density power law exponent. An examination of a small sky area could be

contaminated by halo substructure, and only by examining the entire sky can we

see whether there is substructure in a particular region. However, all is not lost

with regards to fitting the density power law exponent. One would simply have to

remove all pieces of substructure from the Galaxy, and fit the remaining population

to determine the density profile . Cole, et al. (2008) developed a novel technique to

separate tidal debris from SDSS stripes, assuming a particular form for the stellar

spheroid density. This technique was used to map the Sagittarius stream around the

entire SDSS footprint. Future work in this field will involve simultaneously fitting

a spheroid background density and removing stream components to determine the

best fit density power law exponent.

Once substructure was identified in the stellar halo, a flood gate was opened

that permitted the discovery of new halo substructures. Grillmair et al. (1995);

Leon, Meylan, & Combes (2000); and Testa et al. (2000) searched for tidal streams

of globular clusters using photographic data. Odenkirchen et al. (2001) identified

tidal tails around the Palomar 5 globular cluster, which were further expanded to

22◦ by Grillmair and Dionatos (2006). Rockosi et al. (2002) developed a matched

filter technique that is able to select stellar populations out of large sky surveys such

as SDSS. This technique was used by Grillmair and Dionatos (2006) to discover a

63◦ globular cluster stream (GD-1) and Grillmair (2009) to isolate four previously

unknown globular cluster tidal streams from the SDSS footprint. Belokurov et al.

(2006) and Grillmair & Johnson (2006) isolated tidal tails extending from the NGC

5466 globular cluster. Constraints on the Anti-center stream were established by

Grillmair, Carlin and Majewski (2008). The Orphan Stream was independently dis-

covered by Grillmair (2006) and Belokurov et al. (2006), and was elaborated upon

by Newberg, Willett, Yanny, and Xu (2010). New tidal streams are continuing to be

discovered in the SDSS footprint via the matched filtering technique (Grillmair, pri-

vate conversation), however not all streams are discoverable as visible overdensities

in photometric data. The Cetus Polar Stream, discovered by Newberg, Yanny and

Willett (2009) was isolated due to its characteristic velocities. Similarly, a moving

group 50 kpc from the Sun was discovered by Harrigan et al. (2010). Whether dis-
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covered spatially or using velocities, the abundance of data provided by the SDSS

and the availability of advanced data analysis techniques have made it apparant

that the Galaxy is host to many pieces of substructure.

Even after the discovery of the stellar halo and its substructure, mysteries

remained in large-scale Galactic structure. The rotation speeds of stars around the

center of the Milky Way are consistent with being a constant value of v = 220 km s−1

out to distances of 60 kpc from the Galactic center. This suggests that there is more

mass in the Milky Way than can be accounted for in stars. This extra mass is in

the form of a dark matter halo, which extends farther from the Galactic center than

the stellar halo.

Understanding the structure of the dark matter halo is an active research

topic. In this work, we will endeavour to fit orbits to tidal streams in the Galactic

environment. The remainder of this chapter will discuss basic astronomy concepts

such as coordinate systems, various Galactic models that will be used throughout

this Thesis, and finally will describe the process of tidal disruption. In Chapter 2

a general orbit fitting method will be formulated. Chapter 3 will describe a test of

the orbit fitting method on simulated tidal streams, and in Chapter 4 fits to actual

Galactic tidal streams will be presented. The Thesis will conclude with discussion

and future work in Chapter 5.

1.2 Galactic Coordinate Systems

Before we can begin to understand orbits in the Galactic environment, a set

of coordinate systems needs to be devised. Due to the fact that observations are

conducted in a Earth-centered frame, and orbits are modeled in a Galaxy-centered

frame, a clear definition of these systems must be established before proceeding.

Stars in the night sky are observed utilizing the Equatorial coordinate system,

which is an Earth-based system composed of two angles: right ascension (reported

as RA or α), and declination (reported as Dec or δ). Right ascension is the angle

of an object east of the Sun at the March equinox. Declination is the angle of an

object from the celestial equator (e.g. Duffett-Smith, 1988). Due to precession of

the Earth over time, the equatorial coordinates need to be defined with reference to
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a specific date and time. Unless otherwise noted, all equatorial coordinates in this

Thesis are of the J2000 system.

The Galactic Cartesian coordinate system used in this Thesis is defined as a

three-dimensional, right-handed coordinate system. The origin is the center of the

Galaxy. The X axis points from the Galactic center away from the Sun, the Y axis

points in the direction of Galactic rotation, and the Z axis points perpendicular

to the X-Y plane in a right-handed fashion. In this system, the Sun is located at

(XGC , YGC, ZGC) = (−RSun, 0, 0).

Another commonly used coordinate system is the Sun-centered Cartesian co-

ordinate system. The directions of the unit vectors in this system is the same as in

the Galactic system. The only difference is the center of the coordinate system is

shifted along the X axis to the Sun. The center of the Galaxy is then located at

(XSC , YSC, ZSC) = (RSun, 0, 0).

The Galactic coordinate system (not to be confused with the Cartesian one

defined above) is an Earth-based system also composed of two angles: Galactic

longitude (reported as l) and Galactic latitude (reported as b). The center of the

coordinate system, (l, b) = (0◦, 0◦), points toward the center of the Galaxy (along

the X axis defined above). l increases in a counterclockwise fashion. b = +90◦ points

toward the north Galactic pole, while b = −90◦ points toward the south Galactic

pole.

Two additional specialized coordinate systems need to be specified. The first

is the Orphan Stream coordinate system of Newberg, et al. (2010). This system was

developed to easily model the Orphan Stream, and consists of a spherical system

where the Orphan Stream lies along its equator. This system is composed of two

angles: ΛOrphan, BOrphan. The center of the coordinate system, (ΛOrphan, BOrphan) =

(0◦, 0◦) lies along the Orphan stream, at the intersection of that stream and the

leading tail of the Sagittarius Dwarf Tidal Stream. ΛOrphan increases in the direction

of increasing l. The conversion between (l, b) and (ΛOrphan, BOrphan) is accomplished

via the following transformation:
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







cosBOrphan cos ΛOrphan

cosBOrphan sin ΛOrphan

sinBOrphan









= M









cos b cos l

cos b sin l

sin b









,

where

M =









cosψ cos φ− cos θ sinφ sinψ cosψ sinφ+ cos θ cos φ sinψ sinψ sin θ

− sinψ cosφ− cos θ sin φ cosψ − sinψ sin φ+ cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cos φ cos θ









,

where the angles (φ, θ, ψ) were determined by Newberg, et al. (2010) to be (128.79◦

, 54.39◦, 90.70◦).

The other is the Galaxy-centered, Sagittarius Dwarf (Sgr) Tidal Stream system

of Majewski, et al. (2003), which is a similar idea to the previous system but for

a different stream. This system is composed of two angles: ΛSgr,GC and BSgr,GC.

The center of the coordinate system, (ΛSgr,GC, BSgr,GC) = (0◦, 0◦), is located at

(l, b) = (5.6◦,−14.2◦), the Sagittarius Dwarf Galaxy core. ΛSgr,GC increases in the

direction of the leading tidal tail (roughly along the Z-axis). The coordinate system

is defined by the angles (φ, θ, ψ) = (183.8◦, 76.5◦, 201.6◦), with a rotation center of

(XGC , YGC, ZGC) =(−8.51,−0.21,−0.05) kpc.

For the purpose of this Thesis, stars are considered to be point particles. The

orbit of a star is fully determined by its position and velocity in the Galactic Carte-

sian coordinate system, as well as the gravitational field of the Galaxy. While,

in reality, the Galaxy is composed of an aggregation of many distinct and lumpy

components (Newberg, et al. 2002), for our purposes it will be modeled as a super-

position of smooth gravitational potentials. The specific form of these potentials is

described in a later subsection.

Stars within a smooth Galactic gravitational potential evolve according to

Newton’s Laws. No relativistic effects are considered throughout the course of this

work. The fact that, in general, the Galactic gravitational potential is not spherically

symmetric results in an orbit of a tidal stream that cannot simply be modeled as a

great circle on the sky. Even if the potential were perfectly spherical, great circle
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modeling is insufficient because the point of observation (the Sun) is not located at

the Galactic center.

1.3 Galactic Potentials

In the completely general case, the gravitational field of the Galaxy can be un-

derstood as the superposition of potentials from each of the individual mass particles

that make it up. Stars can be simply modeled as spherical gravitational potentials.

Gas and dark matter in the Galaxy pose difficult modeling challenges. If one could

know the positions of all gas particles and dark matter entities, finding the total po-

tential would be trivial. However, gas tends to occur in clumps, and usually only in

the newer, more metal rich population in the Galactic disk. Dark matter is believed

to exist in large quantities above and below the Galactic disk, in what is termed the

dark matter halo. As dark matter particles have yet to be detected, creating a total

gravitational field through superposition is not feasible.

To construct a gravitational model of the Galaxy, we must rely on gravitational

potentials that have appropriate mass density profiles, and finding parameters such

as the total mass and scale length that make the potential appropriate to the Galac-

tic problem. For the purpose of this Thesis, the Galaxy is composed of three parts:

a spherical bulge of matter near the center of the Galaxy, a disk potential spanning

the diameter of the Galactic disk, and a dark matter halo that is several Galac-

tic diameters wide. These models are not new to this work, and will simply be

enumerated below.

1.3.1 System of Units and Relevant Constants

Before discussing Galactic and dwarf potential models, it is necessary to outline

the system of units that will be used for this Thesis. As a matter of tradition,

the gravitational constant is identically 1. The length unit used is a kiloparsec

(kpc, 103 parsecs (pc) = 3.09 × 1019 m). The Galactic disk is on the order of 30

kpc in diameter. The unit of time is the gigayear (Gyr, 109 years = 3.16 × 1016

sec). The unit of velocity is the kiloparsec per gigayear (kpc/Gyr = 1.02 km/s).

To satisfy the requirement of a unity gravitational constant, the unit of mass is
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Mu = 222288.47MSun = 4.45 × 1035 kg).

Typically, observational velocities for stars in the Galactic environment are

reported in kilometers per second. It is a fortunate happenstance that the simulation

unit of kpc/Gyr is nearly identical to this. Orbits and simulations will be performed

in simulation units, and reported in observational units.

In this Thesis, we adopt a Sun-Galactic center distance of RSun = 8.0 kpc.

1.3.2 Spherical Bulge Model

The gravitational potential of Galactic bulge is a simple spherical potential

with a mass Mbulge and scale radius rc. The functional form of this potential is

given in Equation 1.1, with r =
√

X2
GC + Y 2

GC + Z2
GC . For the remainder of this

Thesis, the bulge mass is fixed at Mbulge = 3.4 × 1010MSun and the scale radius is

fixed at rc = 0.7 kpc. These values are adopted from Law, et al. (2005).

Φbulge =
−Mbulge

r + rc
(1.1)

1.3.3 Miyamoto-Nagai Disk

Miyamoto and Nagai (1975) (M-N) derived a generalized, flattened, cylindri-

cally symmetric potential that can be used to represent the disk of the Galaxy. The

functional form of the gravitational potential is given in Equation 1.2,

Φdisk =
−Mdisk

√

X2
GC + Y 2

GC +
(

a +
√

Z2
GC + b2

)2
(1.2)

where a and b are the disk scale length and scale height, respectively. Mdisk is the

total mass of the entire disk potential. Unless otherwise stated, the M-N disk is the

default disk model of this Thesis. The parameters of this model are those from Law

et al. (2005): a = 6.5 kpc, b = 0.26 kpc, and Mdisk = 1 × 1011MSun.

1.3.4 Exponential Disk

The second and final disk model that will be considered is the Exponential

disk. As described in Xue, et al. (2008), this disk potential has the functional form
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Φdisk = −Mdisk

(

1 − e−r/b
)

r
(1.3)

where r =
√

X2
GC + Y 2

GC + Z2
GC , b is the disk scale length and Mdisk is the total

mass of the disk potential. Typical values for the disk scale length are b ≈ 4 kpc.

1.3.5 The Galactic Rotation Curve and the Need for Dark Matter

The Galactic rotation curve is the rotation speed of stars in the X-Y plane as a

function of distance from the Galactic center. To understand the nature of rotation

curves and how they apply to the Galaxy, consider the following two examples:

• Hard Sphere: For the case of a hard sphere rotating with angular momentum

L, the rotation speed at radius r, v(r) is linearly proportional to the radius:

v(r) = ωr.

• Solar System Planets: In the solar system, the planets closer to the Sun orbit

with faster speeds than the planets farther away. The rotation speed as a

function of radius is inversely proportional to the radius: v(r) ∝ 1/r.

A sample disk+bulge rotation curve is shown in Figure 1.2. The rotation curve

for the bulge behaves as a hard sphere, and so see that the blue curve is linear until

R ≈ 0.5 kpc. The Galactic disk (shown in green) contains stars that orbit the

Galactic center in a fashion similar to planets orbiting the Sun, so the disk should

behave like the Solar System. The expected, combined total rotation curve is shown

in red.

Quite unexpectedly, the rotation curve for the Galaxy does not exhibit this

behavior. The velocity increases with radius close to the Galactic center, and shows

a slight drop for intermediate radii (1 kpc < r < 5 kpc), but remains at a constant

speed vrot for larger radii, as can be see by the Xue et al. (2008) rotation curve

data shown in Figure 1.2. This discovery was made by Vera Rubin in 1970 with

Andromeda, but was subsequently shown for our Galaxy.

The accepted explanation for this rotation curve behavior is the presence of

additional, unseen matter in the Galaxy that exists predominantly in the region

above and below the Galactic disk. This additional mass is taken to be non-baryonic
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Figure 1.2 The expected rotation curve for a galaxy only containing a bulge (Mbulge =
3.4× 1010 MSun) and disk (Mdisk = 1.0× 1011 MSun) is shown in red. The individual
bulge and disk components are shown in blue and green, respectively. The linear
behavior for R < 0.5 kpc due to the bulge is apparent, as is the decline in speed as a
function of distance for the disk. Shown also is the derived Galactic rotation curve
from Simulation 1 of Xue et al. (2008). We see that a purely disk+bulge potential
becomes inconsistent with observations for R > 30 kpc.

dark matter. While the true nature of dark matter is well beyond the scope of this

Thesis, the gravitational influence of dark matter can nonetheless be modeled for

our orbit-fitting purposes. Below we enumerate three well established dark matter

gravitational potentials: the logarithmic, triaxial, and NFW dark matter halos.

1.3.6 Logarithmic Halo

Quite simply, to model the Galactic dark matter, the only requirement is to

create a potential that has a flat rotation curve for large radii. Consider a particle

of constant mass orbiting the Galaxy at radius r with speed v and centripedal

acceleration ac. The centripedal acceleration of the particle is ac = v/r. Since

the particle is orbiting solely due to the gravitational field of the Galaxy, the only

acceleration on the particle is centripedal. Therefore, the net force on the particle
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is Fnet = mac = mv/r. This gives a rotation speed v = Fnetr/m. For the speed v

to remain constant for all values of r, the net force must be inversely proportional

to r: Fnet ∝ 1/r. Therefore, the gravitational potential that causes this force must

be logarithmic in r. The general form for a logarithmic dark matter halo potential

is given in Equation 1.4.

Φhalo = v2
haloln

(

X2
GC + Y2

GC +
Z2

GC

q2
+ d2

)

(1.4)

The quantity q is a Z direction flattening parameter. Values of q < 1 rep-

resent oblate matter distributions while values of q > 1 represent prolate mat-

ter distributions. The quantity d is the halo length scale parameter. The total

mass of the halo is contained within the quantity vhalo, the halo speed. Values of

75 km s−1 < vhalo < 150 km s−1 are typical, and represent halos with masses be-

tween 1010 and 1012 MSun. One additional immediate observation of the logarithmic

halo is that, unlike most elementary potentials, it does not vanish at infinity. This

implies that it is meaningless to discuss the “total mass” of the halo, we can only

calculate the enclosed mass within a certain Galactocentric radius. Certainly the

total mass of the Milky Way is not infinite, and this potential must break down at

extremely large radii, but these cases will not be considered here.

1.3.7 Triaxial Halo

The logarithmic halo derived above, even with the Z-direction flattening q, is

a special case of the restricted triaxial logarithmic halo. A restricted triaxial halo

is one with flattenings in all three directions (q1, q2, and qz), and a free angle φ to

rotate the halo axes away from the coordinate system axes. The functional form

for this restricted triaxial potential, from Law and Majewski (2010), is given in

Equation 1.5

Φhalo = v2
haloln

(

C1X
2
GC + C2Y

2
GC + C3XGCYGC + (ZGC/qz)

2 + d2
)

(1.5)

with
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C1 =

(

cos2 φ

q2
1

+
sin2 φ

q2
2

)

(1.6)

C2 =

(

cos2 φ

q2
2

+
sin2 φ

q2
1

)

(1.7)

C3 = 2 sinφ cosφ

(

1

q2
1

− 1

q2
2

)

(1.8)

It is sufficient to set one flattening value to unity (usually q2) because it is only

the ratios of the flattenings that is physically significant. The angle φ rotates the

halo X axis counterclockwise away from the coordinate X’ axis in the XY plane, and

therefore there are combinations of flattenings and φ that can lead to degenerate

potentials.

In the absolute general case, all three halo axes can be rotated away from the

coordinate axes. This is achieved by applying the Euler-angle rotation matrix









q1XGC

q2YGC

qzZGC









= M









X ′

GC

Y ′

GC

Z ′

GC









,

M =









cos θ cosφ cos θ sinφ − sin θ

sinψ sin θ cosφ− cosψ sin φ sinψ sin θ sin φ+ cosψ cos φ cos θ cosψ

cosψ sin θ cos φ+ sinψ sinφ cosψ sin θ sin φ− sinψ cosφ cos θ cosψ









,

to the general logarithmic halo

Φhalo = v2
haloln

(

X′2
GC + Y′2

GC + Z′2
GC + d2

)

. (1.9)

The angles θ, ψ, and φ are the xyz pitch-roll-yaw Euler rotation angles. The

angle θ rotates the halo Z axis away from the coordinate Z’ axis. The angle φ is

the same as before, rotating the halo X axis away from the coordinate X’ axis. The

angle ψ is the roll angle of the halo along the new X axis. Note that this definition

is not the same as that used to describe the specialized stream coordinate systems.
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1.3.8 NFW Halo

One additional dark matter halo model is that derived by Navarro, Frenk

and White (1996). This halo was devised to model equilibrium galactic matter

distributions consistent with ΛCDM cosmologies. The mass density as a function

of Galactocentric radius ρ(r) is given by Equation 1.10

ρhalo =
ρs

r
rs

(

1 + r
rs

)2 (1.10)

where rs is the halo scale length and ρs is the principle halo mass density. The

potential that corresponds to this density is represented as

Φhalo = −
rsv

2
c,max

0.216
ln

(

1 + r
rs

r

)

, (1.11)

where vc,max is the maximum halo circular speed which, like the logarithmic halo, is

representative of the halo mass, and the factor of 1
0.216

is used to put the potential

in the system of units described earlier (Klypin et al. 1999).

This halo has the advantage of describing the mass density of a ΛCDM con-

sistent mass distribution It has the disadvantage that it is inherently spherical.

Flattenings along any of the coordinate axes must be introduced in mass density

profiles, rather than analytically in a gravitational potential (Law, et al. 2005). It is

for this reason that we will consider the NFW halo only in cases comparing results

to spherical logarithmic halos.

1.4 Dwarf Models

With the background Galactic gravitational potentials established, we now

shift our attention to the models that will be used to represent the globular clusters

and dwarf galaxies that will be disrupted. While the Galaxy will be modeled by

a static potential, dwarfs are modeled with individual particles that are populated

within a density distribution. In this subsection, we will enumerate some of the more

commonly used dwarf density distributions: the Plummer, King, Jaffe, Hernquist,

and Dehnen models. These will be described for completeness. For the remainder



15

of this Thesis, we will use the Plummer model for all dwarfs.

In all of the dwarf models desribed below, the quantity rd denotes the distance

from the center of the dwarf.

1.4.1 Plummer Model

The Plummer model (Plummer, 1911) is used to model the stellar distributions

of globular clusters. It is defined by the following potential/density pair (Binney

and Tremaine, 1987, p. 42):

ΦP(rd) = − MP
√

r2
d + a2

(1.12)

ρP(rd) =
3MP

4π

a2

(r2
d + a2)

5
2

, (1.13)

where MP is the total mass and a is the Plummer scale radius (the approximate

physical extent of the cluster).

1.4.2 Isothermal Sphere

The isothermal sphere is a simple model where the thermal energy of the

particles is in hydrostatic equilibrium with the self-gravity of the cluster. They

are useful in modeling because they do not self-collapse in the way that a uniform

density sphere would, but they are not preferred over Plummer models due to the

mass distribution being unlike globular clusters and dwarf galaxies. Nonetheless,

we will provide the potential/density pair for this model:

ΦIS(rd) = 4πa2ρ0ln
( r

a

)

(1.14)

ρIS(rd) = ρ0

( r

a

)−2

. (1.15)

1.4.3 King Models

The King models are a class of dwarf models that, in the words of Binney and

Tremaine “resembles the isothermal sphere at small radii, ..., and is less dense than
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the isothermal sphere at large radii.”

They do not, in general, have well-represented potential/density pairs, but

instead are represented by an energy (ǫ) distribution function

fK(ǫ) =







ρK(2πσ2)
−3
2 (eǫ/σ2 − 1) ǫ > 0

0 ǫ ≤ 0

where σ is the energy dispersion (Binney and Tremaine, 1987, p. 232).

1.4.4 Jaffe Model

The Jaffe model (Jaffe, 1983) is a simple model intended for spherical globular

clusters and dwarf galaxies. The potential/density pair for this model is

ΦJ(rd) =
MJ

a
ln

(

rd

rd + a

)

(1.16)

ρJ(rd) =
MJa

4πr2
d(rd + a)2

. (1.17)

1.4.5 Hernquist Model

The Hernquist model was introduced by Hernquist (1990) to address difficulties

of the Jaffe model. According to Hernquist: “the distribution function derived from

the Jaffe model deviates from that of the de Vaucouleurs R1/4 law at large negative

energies.”

The potential/density pair of this model is

ΦH(rd) = − MH

rd + a
(1.18)

ρH(rd) =
MH

2π

a

rd

1

(rd + a)3
. (1.19)
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1.4.6 Dehnen Model

A generalization of the Jaffe and Hernquist models was formulated by Dehnen

(1993). The potential/density pairs for this model are

ΦD(rd) =
MD

a
×











− 1
2−γ

(

1 −
(

rd

rd+a

)2−γ
)

γ 6= 2

ln
(

rd
rd+a

)

γ = 2

ρD(rd) =
(3 − γ)MD

4π

a

rγ
d(rd + a)4−γ

. (1.20)

The models of Jaffe and Hernquist correspond to the γ = 2 and γ = 1 cases,

respectively.

1.5 The Process of Tidal Disruption

The tidal interaction is a secondary effect of the force of gravity, illustrated

by the following thought experiment (outlined by Ohanian, 1976, p. 26): consider a

space ship orbiting the Earth, with a water droplet at its center. The gravitational

force from the Earth on the bottom of the droplet is greater than the force on the

top of the droplet. Due to the surface tension holding the droplet together, the

droplet bulges in the direction connecting its center to the center of the earth. The

deformation of the droplet is called tidal disruption.

Similarly, instead of a water droplet, consider a bound collection of self grav-

itating particles whose center is the origin of a coordinate system with the z-axis

parallel to the radial line to the center of the Earth. The gravitational force from

the Earth on a particle of mass m at ~r = (0, 0, z) is

~F = −GMEarthm

(r0 + z)2 ẑ (1.21)

where r0 is the distance from the center of the Earth to the origin of our coordinate

system. For small values of z relative to the distance to the Earth, we can Taylor

expand ~F around z to obtain
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~F ≈ −GMEarthm

r2
0

ẑ +
2GMEarthmz

r3
0

ẑ +O
(

z2
)

ẑ (1.22)

We see that the first term is simply the acceleration of the origin relative to

the Earth. So, relative to the origin, the particle experiences a force

~Ftidal =
2GMEarthmz

r3
0

ẑ. (1.23)

We notice that this force is repulsive from the origin, and depends on the

displacement z. This confirms our earlier thought experiment that the water droplet

(or group of particles) would bulge in the radial direction.

Another way to view the tidal interaction is with the tidal radius. The tidal

radius is the distance that a particle needs to be from a spherically symmetric, bound

collection of particles to become gravitationally unbound. The tidal radius depends

on the total mass of the collection, as well as the distance from the collection to

the gravitational source (the Earth, in the above example). As the collection orbits

the source, the tidal radius would become larger at large distance from the source

(few particles would lie outside it) while at small distance from the source it would

become small, allowing more particles to leave the collection.

Once a particle has left the collection, it becomes gravitationally bound to

the source and assumes an orbit that is similar to, but not the same as, the original

collection. Specifically, the particle’s total energy is smaller (larger) than the average

for particles leading (trailing) the collection. The totality of particles leading and

trailing the collection is the tidal stream. This leads to a small, yet important,

theoretical difficulty: how can we model the orbit of the progenitor when all we

have is the stream? The stream, by definition, its not composed of particles with

constant energy, so it should not even be possible to fit an orbit to it.

Whether we are able to approximate the stream with an orbit depends on how

well the kinematics of the stream agree with those of the orbit that generated it. To

understand possible deviations, we will reconsider the collection of particles intro-

duced above, at the moment of tidal disruption. As the collection passes through

perigalacticon (at a distance R), the tidal radius shrinks to a minimum and particles
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become unbound. Consider a particle whose energy differs from the dwarf by an

amount δE. For a given time, the particle’s orbit can deviate from the parent orbit

in two ways: distance from the Galactic center, δr, or total speed, δv. The relative

scale of these deviations is given by Equation 1.24.

δE =

(

∂E

∂v

)

δv +

(

∂E

∂r

)

δr (1.24)

If we assume a form for the energy of the particle E = 1
2
mv2 +mΦ, Equation

1.24 becomes

δE = mvδv +m
∂Φ

∂r
δr (1.25)

Defining a new quantity δǫ = δE/m we obtain

δǫ = vδv +
∂Φ

∂r
δr (1.26)

If we assume a simple form of the Galactic gravitational potential Φ = GMgal/r,

perigalactic distances of 10 kpc, velocities v ≈ 100 km s−1, and a total Galactic mass

of Mgal ≈ 1012MSun, we find that the δv prefactor is several orders of magnitude

smaller than the δr prefactor. Therefore, we expect that a particle removed from

the collection via tidal disruption will deviate from the orbit in distance more than

in velocity.

To illustrate this effect, we will construct two models of tidal disruption: I) a

globular cluster with mass M = 1×105 MSun and radius a = 0.01 kpc and II) a large

dwarf galaxy with mass M = 1×108 MSun and radius a = 0.3 kpc. A test orbit is cre-

ated with starting parameters (l, b, R, vx, vy, vz) = (172◦, 54◦, 8.5 kpc,−90 km s−1,

−230 km s−1,−115 km s−1). We construct Plummer sphere models (Plummer, 1911)

for each of the test cases and evolve them along the orbit using the gyrfalcON tool

of the NEMO Stellar Dynamics Toolbox (Teuben, 1995). Figures 1.3 and 1.4 show

the evolution of the models in Galactic latitude b, Galactic Standard of Rest radial

velocity vgsr, and Sun-centered distance dSun.

We see that an orbit is a good approximation for the stream of a cluster,

while for the large dwarf galaxy, the orbit deviates in distance as was demonstrated
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Figure 1.3 Model I: a globular cluster with mass M = 1 × 105 MSun and radius
a = 0.01 kpc. Top panel shows the test orbit and disruption in Galactic coordinates
l and b, middle shows Galactic Standard of Rest radial velocity vgsr vs. Galactic
longitude l, and bottom shows Sun-centered distance dSun vs. Galactic longitude l.
The model disruption agrees with the test orbit except near the stream ends, where
torquing from the Galactic disk causes deviation from the orbit in sky coordinates.
The stream can be well fit with an orbit for this case.
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Figure 1.4 Model II: a large dwarf galaxy with mass M = 1 × 108 MSun and radius
a = 0.3 kpc. Top panel shows the test orbit and disruption in Galactic coordinates
l and b, middle shows Galactic Standard of Rest radial velocity vgsr vs. Galactic
longitude l, and bottom shows Sun-centered distance dSun vs. Galactic longitude
l. The model disruption does not agree with the test orbit in either velocity or
distance. An orbit cannot be reliably fit to a stream of this type.
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before. For a large dwarf galaxy, we also start to see deviation in the radial velocity.

Therefore, modeling tidal streams with orbits is a good first-order approximation for

globular cluster tidal streams. The negligible deviation in velocity allows us to use

the velocities of the stream stars directly. The deviation in distance can potentially

be dealt with in two ways. First, the distance estimates may be so poor that the

orbit would be consistent with the stream. Secondly, the direction of the stream

can be obtained with radial velocity measurements. One can then know whether

the stream is a leading or trailing tail, and can adjust the measured distances to

find the best fit orbit.

An additional effect that can be noticed from these models is the fact that the

particles at the ends of the streams also deviate from the orbit in sky coordinates l

and b. This is due to the non-spherical disk torquing the highest-energy particles at

perigalacticon and causing displacement on the sky. We will see in Chapter 3 that

mis-determination of stream quantities out near the ends of the stream can lead

to significant modeling difficulties, and that errors in stream quantities need to be

relaxed near stream ends.

While these models illustrate the difficulties with fitting orbits to tidal streams,

they do not answer the underlying question: can we constrain the Galactic back-

ground by fitting an orbit to a stream? After a generalized fitting method is estab-

lished in the next Chapter, this issue will be discussed in Chapter 3.



CHAPTER 2

ORBIT FITTING OF TIDAL STREAMS

2.1 General Orbit Fitting Method

To develop an orbit fitting framework, it is necessary to understand that tidal

streams are collections of stars that have been disrupted by Galactic tidal forces.

It is therefore important to consider all of the stars within a stream. Suppose that

we had the full 6-D phase space information for a single star within a stream. This

complete description would be insufficient to establish an orbit for the stream, as it

would instead establish the orbit of that particular star. While individual stream

stars do not deviate significantly from the stream as a whole, we must endeavour

to understand the statistical properties of the kinematics of all stream stars to

construct a consistent orbit. Before proceeding, we must decide the ideal quantities

to be used in fitting the stream.

2.1.1 Stream Quantities

We seek to find an orbit that most closely corresponds to the collection of

stream stars. But in what quantities should the correspondence be expected? As

was demonstrated in the previous section, a stellar stream and its orbit closely cor-

respond in sky position and radial velocity, but not necessarily in distance. This

separation of coordinates lends itself to stream fitting. Suppose instead we chose to

attempt to fit a stream in Cartesian coordinates. This would result in tremendous

difficulty because a well known radial velocity gets transformed into three compo-

nents, each with more uncertainty. Also, as will be addressed soon, distances to

stars in the Galactic environment are less well known than other quantities, and

these uncertainties would likewise become transformed into three components.

We can, in principle, be in possession of all phase space information of stream

stars. This is accomplished by measuring the angular position on the sky (in any

system, notated in general as two angles [θ, φ]), the Sun-centered distance to the star

(through various tracer populations to be described later), the Galactic Standard of

23
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Rest radial velocity (vgsr) of the star (derived from Doppler shift of stellar spectra),

and the proper motion of the star on the sky.

The primary difficulty is that some of these quantities are more well known

than others. Angular positions (θ, φ) can be measured with extreme accuracy. Ra-

dial velocities can be measured to levels of 5 km s−1. Distances and proper motions,

however, are generally much less well known. Galactic distances typically have er-

rors of one part in ten, and proper motions may have errors of near one hundred

percent.

Therefore, even though orbits are computed and evolved in Galactocentric

Cartesian coordinates, they are fit in the space of sky coordinates, radial velocities,

and Sun-centered distances. We must disregard proper motions of stream stars, and

attempt to find another way to determine the unknown velocity components.

2.1.2 Distance Estimation

Distances to stream stars are amongst the least known quantities. Tidal

streams are far enough away to escape distance estimation via parallax. In this

subsection, we describe the general methods used to obtain stream distances. Spe-

cial cases and considerations will be examined in discussions of real streams.

To estimate distances to tidal streams, we must rely on statistics to populate

a color-magnitude diagram, and identify populations of stars with a known absolute

magnitude. We make use of two particular stellar populations: F-turnoff stars, and

Blue Horizontal Branch stars (BHBs). Shown in Figure 2.1 is a color-magnitude

diagram (CMD) of the globular cluster Palomar 5 (Pal 5), showing the top of the

main sequence, turnoff, giant branch, and horizontal branch in SDSS colors. The

turnoff (located at 20 < g∗ < 21 with colors 0.1 < (g∗−r∗) < 0.3) is a useful distance

indicator because if a certain absolute magnitude is chosen, then the narrow range

of apparent magnitudes yields an approximate distance. The starred magnitudes

represent SDSS commissioning magitudes. More precise distance estimates can be

obtained if an absolute magnitude distribution is assumed (e.g. Cole, 2008), and

convolved with the stellar population. For our purposes, we will utilize a single SDSS

absolute magnitude of Mg0 = 4.2 and blue turnoff colors of 0.0 < (g − r)0 < 0.3
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and (u − g)0 > 0.4. In Figure 2.1, we can also see the Horizontal Branch, located

at −0.3 < (g∗ − r∗) < 0.0 and g∗ = 17.5. These stars provide a good distance

indicator because the Horizontal Branch is at an approximately constant apparent

magnitude, bending toward higher magnitudes at the very blue end. The difficulty

with this population is their relative sparseness compared to main sequence and

turnoff stars. Additionally, it is necessary to separate the Horizontal Branch stars

from Blue Stragglers (stars still on the main sequence but with colors of BHBs).

Within the SDSS, BHBs are contained within the colors −0.3 < (g−r)0 < 0.2, with

an apparent magnitude approximately 3.5 mag brighter than the turnoff magnitude.

In either case, a color magnitude diagram is constructed for each stream loca-

tion, and the apparent magnitude g0 is determined for the desired population (be it

F-turnoff or Blue Horizontal Branch stars). The distance is determined by Equation

2.1,

g −Mg = 5 log10

(

d

10 pc

)

(2.1)

where Mg0 = 4.2 for F-turnoff (Cole, 2009) and Mg = 0.45 for Blue Horizontal

Branch stars (Newberg, et al., 2010).

2.1.3 Determination of Initial Guess Velocity

To perform the gradient search method that will be outlined in the following

sections, we require an initial guess of the stream velocity. Even without stellar

proper motions, we can determine the direction of a stellar stream along the sky.

Suppose we take two stream locations, that have (θ, φ, vgsr, dsun) = (θ1, φ1, v1, d1)

and (θ, φ, vgsr, dsun) = (θ2, φ2, v2, d2). Using these two stream locations, and a known

value for the Sun-Galactic Center distance (Rsun = 8.0 kpc), we convert these

locations into right-handed Galactic XYZ coordinates ~r1 = (X1, Y1, Z1) and ~r2 =

(X2, Y2, Z2). Subtracting these gives the direction vector of the stream ~∆ = (X1 −
X2, Y1 − Y2, Z1 −Z2). Since the stream goes from Point 1 to Point 2, the velocity of

the stream points in the direction of ~∆, namely ~v = vmag∆̂. It is also constrained

by the Galactic Standard of Rest radial velocity at Point 1 (vgsr,1). Therefore we

can solve for the velocity magnitude |~vmag| = vgsr,1

r̂1·∆̂
. We will therefore fit streams in
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Figure 2.1 Color Magnitude Diagram (CMD) of globular cluster Pal 5 in SDSS
colors from Yanny & Newberg et al. (2000). The turnoff is shown between 20 <
g∗ < 21 with colors 0.1 < (g∗ − r∗) < 0.3. The stars indicate SDSS commissioning
magnitudes. Additionally, a Horizontal branch is shown as circled points at g∗ =
17.5 with colors −0.3 < (g∗− r∗) < 0. Care must be taken to avoid Blue Stragglers,
which are shown as circled points at 19 < g∗ < 20 and −0.2 < (g∗ − r∗) < 0. These
two populations are useful distance indicators, despite their intrinsic variability in
brightness. They provide sufficient distance constraints to be used in model orbit
fitting. Figure reproduced with permission.

the following coordinates: the sky coordinates of stream location (θ, φ), the velocity

~v = (vx, vy, vz), and the Sun-centered distance R.

2.1.4 Fit Parameters

With the fit quantities established, we must now consider the parameters that

influence those quantities. We pick a stream location, whose kinematics are deter-

mined by six quantities: (θ, φ, R, vx, vy, vz). The coordinate system of the velocity

components is arbitrary. We could very well choose a system that includes the radial

velocity vgsr, and two tangential velocities vt and vu. We choose the Galactic veloc-

ity components for simplicity. Since the sky positions (θ, φ) of a stream location are

well known, these are not parameters to be fit. The other quantities: (R, vx, vy, vz)
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are to be fit. Additionally, any parameters contained within the previously defined

Galactic potentials may be fit.

2.1.5 Construction of a Fitness Function

With the relevant stream quantities and parameters determined, we now define

a fitness metric. Let the vector ~Q = (R, vx, vy, vz, ...) describe the parameters to be

fit. For each ~Q we seek to create a fitness metric χ2( ~Q). As mentioned previously,

the stream quantities to be fit are the sky locations (θ, φ), radial velocities (rv),

and Sun-centered distances (R). We take the sky coordinate θ as an independent

variable, and construct three goodness of fit metrics for the remaining quantities.

χ2
φ =

∑

i

(

φmodel,i − φdata,i

σφ

)2

(2.2)

χ2
rv =

∑

i

(

rvmodel,i − rvdata,i

σrv,i

)2

(2.3)

χ2
R =

∑

i

(

Rmodel,i − Rdata,i

σR

)2

(2.4)

These three metrics are minimized when the orbit and stream are coincident

in all three quantities. To combine the metrics into a single fitness, we simply add

them and normalize:

χ2
stream =

1

η

(

χ2
φ + χ2

rv + χ2
R

)

, (2.5)

where η = N − n− 1, N is the number of data points, and n is the number of

parameters.

To calculate these χ2 values, we calculate a model orbit using the selected

parameters. We search the orbit for two θmodel values, one on each side of the data

point θdata. We linearily interpolate the orbit via Equations 2.6 through 2.8, and

use the associated φmodel, rvmodel and Rmodel to compute χ2.

φmodel,i =
φmodel,k+1 − φmodel,k

θmodel,k+1 − θmodel,k
(θdata,i − θmodel,k) + φmodel,k (2.6)



28

rvmodel =
rvmodel,k+1 − rvmodel,k

θmodel,k+1 − θmodel,k

(θdata,i − θmodel,k) + rvmodel,k (2.7)

Rmodel,i =
Rmodel,k+1 − Rmodel,i

θmodel,k+1 − θmodel,k
(θdata,i − θmodel,k) +Rmodel,k (2.8)

The total fitness of the model depends on more than just the stream. If we are

fitting parameters of the background gravitational potential, we must also ensure

that the simulated Galactic rotation curve is consistent with observations. For this

work, we adopt the Simulation 1 measurements obtained by Xue, et al. (2008), which

are shown in Figure 1.2. To construct a fitness for the rotation curve, we simply

calculate the rotation speed due to the Galactic potential at the radii measured by

Xue, and sum the squared differences between the model rotation curve and the

data,

χ2
rotcurve =

1

ηrotcurve

∑

i

(

vmodel,i − vdata,i

σv

)2

(2.9)

where ηrotcurve = Nrotcurve −nrotcurve −1, where Nrotcurve is the number of rota-

tion curve data points and nrotcurve is the number of Galactic potential parameters

being fit.

The combined fitness value we then take as the average of the stream fitness

and the rotation curve fitness,

χ2 =
χ2

stream + χ2
rotcurve

2
(2.10)

For the case of multiple streams, the combined fitness extends trivially. If M

is the number of streams, the fitness becomes

χ2 =

(

∑M
i χ2

stream,i

)

+ χ2
rotcurve

M + 1
(2.11)

2.1.5.1 Distance Scale Factors

The stream fitness metric defined above is minimized when the orbit distance

precisely matches the stream distance for a particular value of θ. As was shown
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previously, the tidal stream generated by evolution on a specific orbit need not

match that orbit in distance due to energy segregation. There are several ways

to remedy this difficulty. The first is to not fit the stream distances at all (Law

and Majewski, 2010). This method can be effective if the progenitor of a tidal

stream is well known, as the orbit must pass through said progenitor and it can

constrain the distance scale. However, in the case of no known progenitor, we

can still fit the distances to the tidal stream by introducing distance scale factors

Sleading and Strailing. These are multiplicative factors are applied to the stream

distance data to scale it closer or farther from the Sun in an attempt to have the

orbit pass through the stream in distance. We expect the distance scale factors to

have values Sleading > 1 and 0 < Strailing < 1. To ensure these constraints are met,

we introduce two additional positive-definite parameters σleading and σtrailing such

that if σleading > 1 then Sleading = σleading and if 0 < σleading < 1 then Sleading =

1 + σleading. Similarly, if σtrailing < 1 then Strailing = σtrailing and if σtrailing > 1 then

Strailing = σtrailing − int(σtrailing). The parameters σleading and σtrailing can thus be

fit, and appropriate values of Sleading and Strailing can be guaranteed. These scale

factors are only used in cases where we fit debris from large dwarf galaxies such as

the Sagittarius Dwarf. Hereforth, where they are used, they will be mentioned.

2.1.6 Finding the Best Fit Solution

With a fitness metric defined, we now optimize the orbital parameters such

that χ2 is minimized. To do this, we choose an initial set of parameters, calculate an

orbit within a Galactic potential of our choosing, and calculate χ2. We can minimize

χ2 using a variety of search methods. The two used primarily in this Thesis are the

gradient search method, and the particle swarm optimization method.

2.1.6.1 Gradient Search

The gradient search method is one which analyzes a parameter space by moving

along the direction of steepest descent towards a minimum value. As introduced

before, let the vector ~Q = (R, vx, vy, vz, ...) describe the orbital parameters at the

desired starting location, as well as the halo paramters to be fit. For each ~Q, there
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is an associated χ2( ~Q). We choose an initial set of parameters ~Q0 and find χ2
(

~Q0

)

.

We then iterate the parameters using

Qi,new = Qi,old − hiΛ~∇iχ
2
(

~Qold

)

. (2.12)

We calculate the gradient using a finite-difference method,

∇i χ
2( ~Q) ≈ χ2(Qi + hi) − χ2(Qi − hi)

2hi

∣

∣

∣

∣

all other Qk fixed.
(2.13)

Different values of hi are used because the parameters are on different scales, it

would not be appropriate to use the same step size for them all. Table 2.1 shows

the step sizes used for specific quantities.

Quantity Step Size, h
Distances 0.1 kpc
Velocities 1 km s−1

Flattenings 0.01
Angles 1◦

Table 2.1 Step sizes of quantities used in gradient search and Hessian error estimation

Λ is a variable-learning parameter. It initially begins at Λ = 1, and if the new

value of χ2( ~Q) is smaller than the old, then Λ is multiplied by 1.03, if not, it is

multiplied by 0.80. The purpose of this is to ensure if a minimum is being found,

then it is found faster than with a constant-learning parameter. We also multiply

it by the associated hi value to make the step size appropriate for the parameter

being considered.

2.1.6.2 Particle Swarm Optimization

Particle swarm optimization, first devised by Kennedy and Eberhart (1995),

is an optimization method inspired by biological systems such as flocking birds

and schools of fish. As described by Desell (2009): “This approach consists of a

population of particles, which fly through the search space based on their previous

velocity, their individual best found position (cognitive intelligence) and the global

best found position (social intelligence).”
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A collection of “particles” are created by generating parameters within user-

defined ranges and evaluating a χ2 value for each of these parameter sets. The

particles are assigned “velocities” through the parameter space, and the particles

evolve according to

v ~Qi
(t + 1) = wiv ~Qi

(t) + c1rand()
(

~Qp,i − ~Qi

)

+ c2rand()
(

~Qg − ~Qi

)

(2.14)

and

~Qi (t+ 1) = ~Qi + v ~Qi
(t + 1) . (2.15)

In this formulation, ~Qp,i denotes the parameters corresponding to a particle’s

personal best χ2 value, while ~Qg denotes the parameters corresponding to the global

best χ2 value. The parameters wi, c1 and c2 are user defined constants. The values

of these constants determine the behavior of the search algorithm (Montes de Oca,

2007). The default values for these parameters in this Thesis are wi = 0.5, c1 = 1.0

and c2 = 1.0. Any deviation from these values will be noted. This search method will

become useful when optimizing over a large number of tidal streams and Galactic

potential parameters.

2.1.6.3 Parameter Error Estimation

As described by Cole (2008): “[parameter] accuracy depends upon the shape of

the likelihood surface at its [minimum].” In a manner similar to Cole, and described

by Willett, et al. (2009), we utilize a Hessian method to estimate parameter errors

for our searches. We construct a matrix V of second partial derivatives of the χ2

surface, evaluated at the minimum found by the search method. The step sizes are

the same used in the gradient search, given in Table 2.1. The error estimate for the

ith parameter is σi =
√

2Vii. The V matrix is defined as

V ≡ H−1. (2.16)

The matrix H is the Hessian Matrix, whose elements are given by
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Hij =
H1

ij −H2
ij −H3

ij +H4
ij

4hihj
, where, (2.17)

H1
ij = χ2(Qj + hj , Qi + hi)

∣

∣

all other Qk fixed

H2
ij = χ2(Qj − hj, Qi + hi)

∣

∣

all other Qk fixed

H3
ij = χ2(Qj + hj , Qi − hi)

∣

∣

all other Qk fixed

H4
ij = χ2(Qj − hj, Qi − hi)

∣

∣

all other Qk fixed

(2.18)



CHAPTER 3

VERIFYING ORBIT FITS WITH SIMULATED TIDAL

STREAMS

With the orbit fitting method of the previous chapter established, we now move to

verify its effectiveness by fitting simulated tidal streams. If we were to immediately

apply this method to real streams, but were unable to fit them, there would be

an ambiguity: does our fitting method not work, or are the underlying Galactic

potentials unsuitable for modeling real streams? We can alleviate the first concern by

creating simulated tidal streams within known Galactic potentials, and attempting

to fit them to recover the parameters.

In this chapter, we will consider a variety of simulated situations. The first

will include a single stream with unknown kinematics, followed by consideration

of a single stream with unknown kinematics and potential parameters. We will

comment on the constraints placed on the total halo mass via fitting in an incorrect

halo model. Finally, we will address fitting multiple streams in axisymmetric and

triaxial halo models.

The simulated tidal streams in this chapter are specifically chosen to mimic

the real tidal streams that will be discussed in the next chapter. We will therefore

only draw conclusions that are based upon these particular examples. The ulti-

mate purpose of this chapter is to establish whether, even in principle, simulated

tidal streams similar to those to be discussed can place constraints on the Galactic

gravitational potential. The first simulated stream is chosen to mimic the Stream

of Grillmair & Dionatos (GD-1), the second the Orphan Stream, and the third the

Sagittarius Dwarf Tidal Stream.

3.1 Stream Generation

A simulated stream is generated by choosing a set of kinematic parameters

~Q = (θ, φ, R, vx, vy, vz) and an underlying Galactic potential, and evaluating an

orbit. The orbit time must be sufficiently long to ensure significant disruption,

33
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Figure 3.1 Illustration of stream generation process in Galactic Cartesian coordi-
nates. A set of kinematic parameters is chosen and an orbit evolved back in time.
A Plummer sphere, shown in blue, is placed at the location and velocity predicted
by the orbit, and evolved forward in time to create a disrupted stream, shown in
red. The forward direction of the orbit is indicated by the arrow.

but not so long as to violate the assumption of a static Galactic potential. These

simulations adopt an orbit time of tback = 4 Gyr. All of our orbits are created

and evaluated using the mkorbit and orbint tools of the NEMO Stellar Dynamics

Toolbox (Teuben, 1995).

With an orbit that predicts the kinematics for our model at a time 4 Gyr in

the past, we place a Plummer sphere with N = 10000 particles at this location and

velocity, and evolve it forward in the same Galactic potential used to generate the

orbit. The Plummer sphere parameters a and MP are dependent on the type of

stream we wish to generate. The N-body evolution code used for this chapter is the

gyrfalcON tool (Dehnen, 2002) of the NEMO Stellar Dynamics Toolbox (Teuben,

1995). This sequence of events is depicted in Figure 3.1.

With the stream realized, we now disregard the real orbit used to create it,
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and analyze the simulated stream itself. We choose to represent the stream in the

(l, b, vgsr, dSun) system for reasons described in the previous chapter. This choice

is arbitrary. We could very well choose to represent the stream in any angle and

velocity space, so long as proper conversions are done. We select a set of l windows

2◦ wide, and find the mean b, vgsr, and dSun values predicted by the stream, as well

as the errors of these quantities. To ensure that we are only analyzing real stream

particles, as opposed to outliers, we use a 2σ clipped mean.

3.1.1 Distance Estimation

The errors in distance require special consideration. As described previously,

distances are determined by examining the magnitude of F-turnoff and Blue Hori-

zontal Branch stars. Distances are thus limited by the uncertainty in the absolute

magnitudes of these stellar populations. In a simulated stream, we know the dis-

tances to the particles exactly. We must therefore perturb the simulated stream

distances to make them representative of a true stream.

Cole (2008) utilized an F-turnoff magnitude of 4.2 ± 0.6 mag. We convert

our stream distances to magnitudes using Equation 2.1. The magnitudes are then

perturbed by a Gaussian random number with mean zero and sigma of 0.6 mag, and

converted back to distances. To illustrate this effect, Figure 3.2 shows a simulated

stream in (l, dSun) space. The left panel shows the distances to the simulated stream,

while the right panel shows the same stream with perturbed distances. We then

analyze the perturbed distances with a 2 σ clipped mean to obtain distance means

and errors.

3.2 Fitting a Single Simulated Stream

With a stream generation method established, we now consider fitting a single

simulated stream under under a variety of conditions. These conditions include:

known and unknown halo potential parameters, with and without supplementary

rotation curve data, and in a similar yet incorrect halo model.
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Figure 3.2 Illustration of simulated stream distance perturbation. Left panel shows
the Sun-centered distance of a simulated globular cluster tidal stream. The F-turnoff
magnitudes of the stream particles have been perturbed by a Gaussian random
number with mean zero and sigma of 0.6 mag in the right panel.

3.2.1 Single Simulated Stream: Known Background Parameters

The first situation we will consider is a single simulated stream evolved within

a known Galactic potential. The stream’s simulated orbit has initial kinematics of

(l, b, R, vx, vy, vz) = (170◦, 50◦, 10 kpc,−100 km s−1,−300 km s−1,−100 km s−1). It

is evolved for 4 Gyr within a Bulge + M-N Disk + Logarithmic halo with parameters

given in Table 3.1. The disk and bulge models and parameters will remain constant

throughout this entire analysis. The cluster is represented by a Plummer model

with radius a = 0.2 kpc and mass MP = 10 Mu ≈ 2 × 107 MSun. The clipped mean

detections are given in Table 3.2 and the stream depicted in Figure 3.3.

We use the l = 175◦ and l = 225◦ points and the method described in Chapter

2 to establish a velocity guess of v = (−50 km s−1,−180 km s−1,−70 km s−1).

Gradient searches were performed on random parameter sets by taking the principle

values, (R, vx, vy, vz) = (9.8 kpc,−50 km s−1,−180 km s−1,−70 km s−1), and

perturbing them by random numbers between ±75 percent of their values. Seven
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Parameter Value
Mdisk 1.0 × 1011 MSun

Mbulge 3.4 × 1010 MSun

adisk 6.5 kpc
bdisk 0.26 kpc
cbulge 0.7 kpc
vhalo 114 km s−1

q 1.0
d 12.0 kpc

Table 3.1 Fixed Galactic potential parameter values

l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
100 42.59 0.12 -207.9 0.5 15.5 0.7
125 50.73 0.14 -157.8 0.6 11.6 0.8
150 52.05 0.23 -102.2 0.9 10.5 0.5
175 49.09 0.22 -32.3 0.6 10.9 0.6
200 39.43 0.22 57.5 0.9 9.8 0.4
225 16.71 0.21 172.5 0.9 11.5 0.3

Table 3.2 Single stream dataset for spherical logarithmic halo with vhalo =
115 km s−1 and d = 12 kpc.

gradient searches were performed, two reached local minima, while five reached a

global minimum. The average of the five good searches, including parameter errors,

is shown in Table 3.3 . The fitness value of this solution is χ2 = 5.52. The high

value of this fitness is not cause for alarm. The small velocity errors determined

by the clipped mean give rise to large χ2 values due to the fact that orbit does not

precisely match the stream. If the velocity errors are increased to 5 km s−1, the

fitness value drops to χ2 = 1.60. This issue will be further addressed in the next

section. The best fit and real orbits, as well as the stream detections are shown in

Figure 3.4. We can see that the fit orbit is consistent with the true orbit. The only

deviation occurs at large distances, but as was shown in the previous chapter, this

is not an unexpected effect.

While the gradient search is able to find a solution to this stream that is

consistent with the real orbit, it made apparent that this search method is prone to

finding local minima. We attempt to alleviate this difficulty by conducting random

parameter starts, however, as the number of parameters increases, gradient search
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Figure 3.3 Simulated tidal stream in logarithmic halo with vhalo = 115 km s−1,
q = 1.0 and d = 12 kpc. Top panel shows stream and true orbit in (l, b) sky
coordinates. Middle shows stream radial velocity vgsr as a function of l, while
bottom shows perturbed stream distance dSun as a function of l.

Parameter Value
R 9.8 ± 0.6 kpc
vx −97 ± 2 km s−1

vy −300 ± 2 km s−1

vz −103 ± 2 km s−1

χ2 5.52

Table 3.3 Best gradient search fit of kinematic parameters parameters of a single
simulated stream.

will soon become an ineffective search method.

For contrast, we will now analyze the same single simulated stream using

particle swarm optimization. The aim of this is to see if, given the same data

and starting information, particle swarm is a more effective minimization method.

Utilizing particle swarm optimization with 5 particles, we find the best fit solution

given in Table 3.4. The fitness of this solution is χ2 = 5.52. We can see that particle

swarm was able to find the same solution, without converging to any local minima.

The disadvantage is particle swarm required 2546 function evaluations, as opposed
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Figure 3.4 Top panel shows true and fit orbits in (l, b) coordinates, middle panel
shows (l, vgsr), and bottom panel (l, dSun). It can be seen that the fit orbit is a very
good approximation of the true orbit. The only deviation can be seen at low and
high l values in radial velocity and distance. The previous chapter showed that a
stream can deviate from its orbit in distance near apogalacticon. This difference
between true and fit is therefore not unexpected.

to the 1380 required by gradient search. The number of function evaluations and

particles required will increase dramatically as the number of parameters increases

but, as will be demonstrated later, the ability to find global minima will far outweigh

the increase in function evaluations.

Parameter Value
R 9.8 ± 0.6 kpc
vx −97 ± 2 km s−1

vy −300 ± 2 km s−1

vz −103 ± 2 km s−1

χ2 5.52

Table 3.4 Best particle swarm fit of kinematic parameters parameters of a single
simulated stream.
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3.2.2 Single Simulated Stream: Unknown Background Parameters

The next situation we will consider is fitting the kinematic and potential pa-

rameters of a single simulated stream. The purpose of this test is to determine

whether a single stream can recover the parameters of the potential in which it is

produced. We utilize the same simulated stream from the previous section. In ad-

dition to fitting the stream kinematics, we also fit the halo parameters vhalo, q, and

d.

3.2.2.1 Fitting Without Rotation Curve

Fitting the potential introduces two situations: one where we fit only the

stream, and the other where we fit both the stream and the rotation curve of the

potential. We consider the first case here, and the second in the next section.

Fitting the potential without a rotation curve simply requires introducing more

parameters into the fit. We will utilize vhalo, q, and d starting values of 100 km s−1,

1.0 and 12 kpc, respectively. Results from five random gradient search starts are

given in Table 3.5. The Hessian calculation for this fit did not converge, therefore

no parameter errors are reported.

R (kpc) vx (km s−1) vy (km s−1) vz (km s−1) vhalo (km s−1) q d (kpc) χ2

9.5 -86 -274 -98 11 14.9 20.0 6.38
9.5 -86 -274 -98 14 3.09 6.1 6.11
9.5 -86 -274 -98 13 2.38 9.0 6.23
9.5 -87 -275 -98 54 9.13 27.7 5.65
9.5 -87 -274 -98 32 19.5 26.1 5.97

Table 3.5 Results of five random gradient searches of a single simulated stream with
potential parameters, without rotation curve.

The results of Table 3.5 demonstrate that, in general, we are unable to con-

strain the potential with this single stream without a rotation curve.

3.2.2.2 Fitting With Rotation Curve

We now consider the case where we attempt to fit the kinematic and halo

parameters of a single stream with a rotation curve. Before we can proceed, we must

comment on the generation of the simulated rotation curve. For a given Galactic
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potential, the rotation curve is well defined for a specific set of potential parameters.

Therefore, if we generate a rotation curve, and fit the parameters associated with it,

there will be a well-defined, perfect fit. In a manner similar to the stream distances,

we must perturb the rotation curve velocities to account for experimental errors.

We generate a rotation curve for the perfect halo, and perturb each velocity by a

Gaussian random number with mean zero and sigma 20 km s−1. This is an error

representative of the Xue, et al. (2008) rotation curve data.

In the manner described in Chapter 2, we fit a single stream within a logarith-

mic halo with a sample rotation curve. We fit via gradient search with five random

starts. The kinematic results of these starts, with Hessian errors, are shown in Table

3.6, while the potential parameter results are given in Table 3.7.

N R (kpc) vx (km s−1) vy (km s−1) vz (km s−1)
1 9.7 ± 0.7 -96 ± 5 -297 ± 12 -104 ± 4
2 9.5 ± 0.6 -89 ± 2 -279 ± 3 -98 ± 2
3 9.5 ± 0.7 -89 ± 2 -280 ± 4 -98 ± 2
4 9.6 ± 0.6 -94 ± 4 -292 ± 10 -102 ± 3
5 9.6 ± 0.6 -92 ± 4 -289 ± 9 -101 ± 3

Table 3.6 Kinematic results of five random gradient searches of a single simulated
stream with potential parameters and rotation curve.

N vhalo (km s−1) q d (kpc) χ2

1 96 ± 23 0.82 ± 0.12 8.1 ± 7.8 5.4
2 96 ± 23 3.89 ± 0.83 8.2 ± 4.7 8.2
3 84 ± 30 2.60 ± 1.71 23.5 ± 8.4 8.5
4 103 ± 27 0.85 ± 0.15 15.7 ± 6.8 5.3
5 105 ± 26 0.86 ± 0.18 18.9 ± 6.5 5.5

Table 3.7 Halo parameter results of five random gradient searches of a single simu-
lated stream with potential parameters and rotation curve.

Two particularly interesting observations can be made from these results. The

first is the halo parameters are not at all recovered by these fits. The second is that

there are two distinct minima recovered by the gradient search. This is problematic

because if we can recover two distinct minima with five gradient searches, we have

no way of knowing if the better of the two is the global minimum.
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To remedy this difficulty, we seek a global minimum via particle swarm opti-

mization. Using N = 10 particles, we find best fit parameters shown in Table 3.8.

The χ2 for this fit is 3.98. We see that the lesser of the two fitness values found by

gradient search is not a global minimum. We also see more reasonable halo parame-

ters with this fitness. This conclusively demonstrates that particle swarm is a more

effective and reliable search method for this problem.

Parameter Value
R 9.7 ± 0.9 kpc
vx −100 ± 6 km s−1

vy −308 ± 14 km s−1

vz −107 ± 5 km s−1

vhalo 123 ± 22 km s−1

q 0.80 ± 0.11
d 9.7 ± 7.2 kpc
χ2 3.98

Table 3.8 Best particle swarm fit of kinematic and potential parameters of a single
simulated stream.

We now wish to see whether the particular perturbation of our rotation curve

has an effect on the fit halo parameters. Since gradient search has proven to be

unreliable, we perform particle swarm optimizations using four different rotation

curve perturbations. The results, shown in Table 3.9 shows the halo parameters

between different rotation curve perturbations are consistent with each other to

within errors.

Rotation Curve vhalo q d
1 108 ± 26 0.87 ± 0.19 12.8 ± 7.1
2 102 ± 26 0.84 ± 0.17 11.2 ± 10.1
3 121 ± 23 0.81 ± 0.12 12.3 ± 6.4
4 117 ± 26 0.82 ± 0.14 12.8 ± 9.3

Table 3.9 Best fit particle swarm halo parameters of a single simulated stream with
potential parameters and different rotation curve perturbations.

We observe a slight discrepancy between the fit halo flattening q and the true

value. While the fit and true values are consistent to within 2σ confidence, the

nature of a global minimum at q ≈ 0.85 deserves investigation. There are two
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distinct possibilities: either the orbit of this stream is fundamentally unable to

provide the correct value of q, or the errors of the stream quantities preclude a good

fit.

To examine the first case, we imagine that the stream’s orbit is all that is seen

on the sky. We process the orbit like we would the stream, by selecting 2◦ wide

slices in l and obtaining orbit values of b,vgsr, and dSun using a clipped mean. These

values can then be fit in the same manner as the simulated stream above. The errors

on the orbit quantities are thus very small, and the orbit dataset is given in Table

3.10.

l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
100 42.659 0.006 -208.42 0.02 15.15 0.09
125 50.479 0.003 -158.78 0.04 11.81 0.10
150 52.289 0.001 -100.66 0.05 10.38 0.09
175 48.845 0.005 -31.60 0.07 9.94 0.09
200 38.429 0.011 59.58 0.07 10.31 0.08
225 17.545 0.013 170.16 0.05 12.62 0.06

Table 3.10 Orbit dataset for spherical logarithmic halo with vhalo = 115 km s−1 and
d = 12 kpc.

Fitting the orbit data using particle swarm optimization gives the best fit

parameters shown in Table 3.11. These results are consistent with the true values

at the 2σ level. Fitting without the distance perturbation method gives the best fit

parameters of Table 3.12. Finally, fitting the orbit without distance perturbations

and with a perfect rotation curve gives the best fit values of Table 3.13.

Parameter Value
R 10.06 ± 0.38 kpc
vx −101.5 ± 0.8 km s−1

vy −303.5 ± 1.6 km s−1

vz −100.8 ± 0.5 km s−1

vhalo 121.5 ± 4.8 km s−1

q 0.97 ± 0.03
d 11.8 ± 0.5 kpc

Table 3.11 Best particle swarm fit of kinematic and potential parameters of a single
simulated stream orbit data with distance perturbation.
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Parameter Value
R 10.000 ± 0.001 kpc
vx −99.9 ± 0.2 km s−1

vy −299.9 ± 0.4 km s−1

vz −100.0 ± 0.2 km s−1

vhalo 111.9 ± 5.2 km s−1

q 1.00 ± 0.01
d 11.1 ± 1.7 kpc

Table 3.12 Best particle swarm fit of kinematic and potential parameters of a sin-
gle simulated stream orbit data without distance perturbation and with imperfect
rotation curve.

Parameter Value
R 10.000 ± 0.001 kpc
vx −100.0 ± 0.1 km s−1

vy −300.0 ± 0.1 km s−1

vz −100.0 ± 0.1 km s−1

vhalo 115.00 ± 0.02 km s−1

q 1.00 ± 0.01
d 12.00 ± 0.01 kpc

Table 3.13 Best particle swarm fit of kinematic and potential parameters of a single
simulated stream orbit data without distance perturbation and with perfect rotation
curve.

This shows that the inability to fit the halo structure parameters is not a

result of any property of the orbit itself. If the orbit was perfectly known, the

potential parameters can be recovered. Therefore, any deviation from the true halo

parameters is a manifestation of three effects: the distance perturbation arising from

the absolute magnitude distribution, the rotation curve perturbation arising from

anticipated observational error, and the inherent dispersion of the stream quantities.

It is therefore concluded that the dispersion of the stream is responsible for the bad

fits of q, and this single stream cannot recover the halo structure parameters to the

required accuracy.

3.2.2.3 Constraining Halo Mass in Incorrect Halo

This section will briefly address the issue of constraining the halo mass of a

stream when it is fit in an incorrect potential.

Utilizing the same stream as the previous two sections, which was generated
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in a spherical logarithmic halo, we will fit its kinematic parameters and simulated

rotation curve within a spherical NFW halo with variable vc,max and rs. The loga-

rithmic and NFW halo models are not particularly different, and thus we expect to

be able to recover the total halo mass. To avoid local minima, we fit via particle

swarm with N = 100 particles. The best fit solution, with errors, is shown in Table

3.14. The χ2 for this fit is 3.74.

Parameter Value
R 9.7 ± 0.6 kpc
vx −93 ± 4 km s−1

vy −290 ± 9 km s−1

vz −101 ± 3 km s−1

vc,max 144 ± 37 km s−1

rs 49.8 ± 3.4 kpc
χ2 3.74

Table 3.14 Best particle swarm fit of kinematic and potential parameters of a single
simulated stream within NFW Galactic potential.

To understand how the halo masses compare, we must utilize the potentials

from the previous chapter and Poisson’s equation to obtain the mass density as a

function of radius. We then integrate this density to a standard distance to calculate

the enclosed mass. Figure 3.3 shows the simulated stream being enclosed within

RGC < 60 kpc. This will be the distance used for the subsequent mass calculations.

Let r2 = X2
GC + Y2

GC + Z2
GC. The density of the logarithmic halo given in

Equation 1.4 is

ρLog(r) = 1
4πr2

∂
∂r

(

r2 ∂ΦLog

∂r

)

=
v2

halo

2π

(

3
r2+d2 − 2r2

(r2+d2)2

)

.

The mass enclosed within 60 kpc for the logarithmic halo is

MLog(r < 60 kpc) =
∫ 60 kpc

0
4πr2ρLog(r)dr

= 3.3 × 1011 MSun.

For comparison, the density and enclosed mass within the best-fit NFW halo are
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ρNFW(r) = 1
4πr2

∂
∂r

(

r2 ∂ΦLog

∂r

)

= − rs v2
c,max

4π r2 ×0.216

(

rs

(r+rs)2
−

1
rs

1+ r
rs

)

and

MNFW(r < 60 kpc) =
∫ 60 kpc

0
4πr2ρNFW(r)dr

= 2.6 × 1011 MSun.

Therefore, the NFW halo mass is broadly consistent with the logarithmic halo

mass. This is an important result. If we assume a spherical halo and fit a tidal

stream created in one halo within the model of another halo, we find the halo mass

to be broadly consistent. Therefore, while a single stream may not place tight

constraints on a halo’s structure parameters, if a spherical halo is assumed, it is

capable of broadly recovering the halo mass.

3.3 Fitting Two Tidal Streams

The previous section demonstrated that fitting orbits to a single well-defined

tidal stream is possible, and can reliably retrieve the kinematic parameters that

created the stream. However, the halo structure parameters were not recovered to

the desired accuracy. This may be due to the fact that one stream only samples a

small part of the Galactic halo. While its orbit may take it out to large distances

and other areas of the sky, the region sampled by one stream is relatively small.

Fitting two streams will allow us to sample different areas of the sky, and may place

more constraints on the halo.

3.3.1 Two Simulated Streams: Unknown Logarithmic Halo

We now endeavour to fit two tidal streams within the Galactic potential. The

first stream will be the same one used in the previous section, except evolved in

a logarithmic halo with vhalo = 115 km s−1, q = 1.5, and d = 15 kpc. The

purpose of these differences is to see whether a two stream fit will converge on a non-

spherical halo. The new stream will have kinematic parameters (l, b,R, vx, vy, vz) =

(220◦, 53.5◦, 30 kpc,−200 km s−1, 100 km s−1, 100 km s−1). It will be made to

represent a slightly larger dwarf galaxy, and thus modeled by a Plummer sphere
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with a = 0.3 kpc and MP = 15 Mu . We are required to regenerate the detections

of Stream 1 from the previous section since the halo parameters have been changed.

The simulated detections for this Stream 1 are given in Table 3.15 , those of Stream

2 are given in Table 3.16 and the streams are shown in Figure 3.5. We use the

l = 225◦ and l = 275◦ points to obtain a velocity guess for Stream 2 of v =

(−165 km s−1, 50 km s−1, 105 km s−1). We use the same velocity guess for Stream

1 as in the previous section.

l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
75 29.43 0.10 -221.5 0.3 24.8 0.4
100 46.33 0.16 -209.3 0.5 14.7 0.6
125 54.60 0.16 -158.7 0.4 12.0 0.7
150 56.63 0.15 -104.2 0.4 9.2 0.7
170 54.83 0.16 -55.9 0.7 10.6 0.4
200 44.63 0.22 43.7 0.7 10.7 0.5
225 23.18 0.18 157.8 0.7 11.3 0.4
250 -7.40 0.15 210.1 0.3 21.0 0.3

Table 3.15 Stream 1 dataset for prolate logarithmic halo with vhalo = 115 km s−1,
q = 1.5 and d = 12 kpc.

l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
175 46.25 0.08 97.9 0.8 50.0 0.7
200 51.71 0.08 136.2 0.6 37.1 1.0
220 53.55 0.13 133.1 0.5 30.5 0.8
250 51.11 0.13 101.8 0.2 26.2 1.0
275 42.08 0.16 47.7 0.6 23.1 1.1
300 24.61 0.15 -42.1 1.2 21.6 0.6
325 -1.43 0.14 -135.3 1.1 26.1 0.6
350 -23.13 0.06 -162.4 0.6 39.8 1.1

Table 3.16 Stream 2 dataset for prolate logarithmic halo with vhalo = 115 km s−1,
q = 1.5 and d = 12 kpc.

We showed previously that the kinematics of one stream can be reliably fit in

both known and unknown halos. We will therefore not repeat this exercise with two

streams. We will also not repeat fitting in a variable halo without rotation curve

data, since we showed this to be fruitless. Instead, we will proceed immediately to

fitting two streams in a logarithmic halo with variable vhalo, q and d and a simulated
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Figure 3.5 Simulated tidal streams in logarithmic halo with vhalo = 115 km s−1,
q = 1.5 and d = 12 kpc. Top panel shows both streams and true orbits in (l, b) sky
coordinates. Middle shows both streams radial velocity vgsr as a function of l, while
bottom shows perturbed distances dSun as a function of l.

rotation curve. Finally, we will fit two tidal streams in a triaxial halo and show that

all triaxial parameters can be recovered.

Fitting two streams within a variable logarithmic halo translates into mini-

mizing a metric with eleven parameters. Increasing the parameter count from seven

to eleven drastically increases the dimensionality of the minimization. We showed

in the previous section that particle swarm is always capable of finding the same

minima as gradient search, and never finds local minima. As the number of pa-

rameters increases, we expect the surface to become more contaminated with local

minima. We will therefore not attempt these fits with gradient search, and will rely

on particle swarm.

The best fit parameters of a particle swarm optimization are given in Table

3.17. The fitness of this solution is χ2 = 23.5.

We can see that the halo speed and scale length are not well recovered via
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Parameter Value
R1 9.8 ± 0.6 kpc
v1,x −96 ± 2 km s−1

v1,y −294 ± 4 km s−1

v1,z −99 ± 2 km s−1

R2 25.8 ± 1.4 kpc
v2,x −196 ± 5 km s−1

v2,y 100 ± 5 km s−1

v2,z 102 ± 2 km s−1

vhalo 145 ± 11 km s−1

q 1.52 ± 0.11
d 24.1 ± 3.0 kpc
χ2 23.5

Table 3.17 Best particle swarm fit of kinematic and potential parameters of two
simulated streams.

these two streams, and are bothered by a strange peculiarity in the distance R2.

The true value is R2 = 30.0 kpc while the fit value is R2 = 25.8 kpc. The ve-

locities being consistent, it is odd that the particle swarm would find R2 to be so

blatently inconsistent with the true value. If the radial velocity errors are expanded

to 5 km s−1, the correct R2 and halo values are recovered. On the face, this seems

contradictory to the findings of the previous section: smaller velocity errors should

recover the parameters better. However, we’d like to draw attention to the l = 175◦,

l = 325◦ and l = 350◦ points in Figure 3.5. These points, being near the ends of

the stream, possess velocities that have small errors, but are not consistent with

the orbit value to within 2 σ confidence, as can be seen in Figure 3.6. The particle

swarm is fitting these velocities, attempting to find an orbit that is consistent with

them, but sacrificing accuracy in R2 and the halo parameters to obtain a good fit.

This is also driving up the χ2 value. If these points are eliminated from the dataset,

the best fit parameters become those shown in Table 3.18, with a fitness value of

χ2 = 3.00. The best fit and true orbits are shown, along with the stream detections,

in Figure 3.7. We see two valuable insights from this: the distance R2 and the

kinematic parameters are extremely well recovered once we eliminate points from

the stream ends. However, the fit to the halo flattening q is sacrificed. This serves

as a warning: radial velocities at the end of a stream may be inconsistent with the
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true orbit of that stream, and one must be extremely aware when using them in

fits. They may help to constrain halo structure parameters, but at the expense of

an obvious kinematic best fit.

 60
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Figure 3.6 View of Figure 3.5 in range 170◦ < l < 180◦. Shown in red is the
radial velocity of the simulated tidal stream, with radial velocity determined by
mean clipping shown in pink. The clipped mean accurately determines the mean
radial velocity, but has errors that make it inconsistent with both the true and fit
orbits. This is due to the stream deviating from the orbit near the far ends. This is
remedied by increasing the velocity errors of the simulated streams to observationally
reasonable values.

To remedy this problem, all fits for Streams 1 and 2 subsequent to this will

use radial velocity errors that are larger than the clipped mean predictions, but still

experimentally plausible. These are reflected in Tables 3.19 and 3.20.

A particle swarm optimization on these new stream datasets gives best fit

parameters shown in Table 3.21. The fitness of this solution is χ2 = 1.18. The best

fit and true orbits are shown, along with the stream detections, in Figure 3.7.

This section shows that two streams can broadly fit the halo flattening, that

is they can determine that the halo is “definitely” prolate. We see, however, that



51

Parameter Value
R1 10.0 ± 0.7 kpc
v1,x −98 ± 4 km s−1

v1,y −295 ± 7 km s−1

v1,z −100 ± 2 km s−1

R2 29.9 ± 2.8 kpc
v2,x −201 ± 9 km s−1

v2,y 104 ± 8 km s−1

v2,z 101 ± 3 km s−1

vhalo 132 ± 13 km s−1

q 1.28 ± 0.19
d 20.6 ± 4.4 kpc
χ2 3.00

Table 3.18 Best particle swarm fit of kinematic and potential parameters of two
simulated streams without endpoints.

l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
75 29.43 0.25 -221 5 24.8 0.4
100 46.33 0.25 -209 5 14.7 0.6
125 54.60 0.25 -159 5 12.0 0.7
150 56.63 0.25 -104 5 9.2 0.7
170 54.83 0.25 -56 5 10.6 0.4
200 44.63 0.25 44 5 10.7 0.5
225 23.18 0.25 159 5 11.3 0.4
250 -7.40 0.25 210 5 21.0 0.3

Table 3.19 Stream 1 dataset for prolate logarithmic halo with vhalo = 115 km s−1,
q = 1.5 and d = 12 kpc with expanded velocity errors.

the halo scale length is not consistent with the true value to within 2σ confidence,

and depending on the velocities chosen on the stream, the halo flattening fits may

be unreliable.

To test the effect of a particular rotation curve perturbation, we perform four

additional particle swarm optimizations with different rotation curves. The values

of d are given, with errors, in Table 3.22. We can see that the halo scale length is

not consistent with the true value.
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l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
175 46.25 1.0 97 10 50.0 0.7
200 51.70 1.0 136 5 37.1 1.0
225 53.55 1.0 133 5 30.5 0.8
250 51.11 1.0 102 5 26.2 1.0
275 42.08 1.0 48 5 23.1 1.1
300 24.61 1.0 -42 10 21.6 0.6
325 -1.43 1.0 -135 10 26.2 0.6
350 -23.13 0.5 -162 5 39.8 1.1

Table 3.20 Stream 2 dataset for prolate logarithmic halo with vhalo = 115 km s−1,
q = 1.5 and d = 12 kpc with expanded velocity errors.

Parameter Value
R1 9.7 ± 0.8 kpc
v1,x −93 ± 8 km s−1

v1,y −289 ± 15 km s−1

v1,z −101 ± 10 km s−1

R2 30.6 ± 1.9 kpc
v2,x −194 ± 15 km s−1

v2,y 92 ± 12 km s−1

v2,z 104 ± 14 km s−1

vhalo 117 ± 15 km s−1

q 1.61 ± 0.38
d 19.7 ± 2.0 kpc
χ2 1.18

Table 3.21 Best particle swarm fit of kinematic and potential parameters of two
simulated streams with experimentally plausible velocity errors.

3.3.2 Two Simulated Streams: Unknown Triaxial Halo

The previous section demonstrated that two streams can do what one cannot:

two of the three logarithmic halo parameters (vhalo and q) can be fit reliably when

using two streams and a simulated rotation curve. The fit halo scale length d is not

consistent with the true value.

Despite this limitation, we are curious how far we can push this ability. We

therefore move to fitting two streams in a triaxial halo with all parameters un-

known: vhalo,t, q1, qz, dt, and φ. Both streams were regenerated in a triaxial halo

with the parameters found by Law and Majewski (2010): (vhalo,t, q1, qz, dt, and φ) =

(115 km s−1, 1.38, 1.36, 15 kpc, 97◦). We use these parameters in particular because
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Figure 3.7 Top panel shows true and fit orbits in (l, b) coordinates, middle panel
shows (l, vgsr), and bottom panel (l, dSun). It can be seen that the fit orbits are
good approximations of the true orbits. The fit orbits succeed in correlating with
the stream detections. The true orbit deviates from the stream detections at the
extreme ends of the streams.

Rotation Curve d (kpc)
1 19.7 ± 2.7
2 21.0 ± 2.5
3 18.9 ± 4.5
4 19.4 ± 3.1

Table 3.22 Results of four particle swarm optimizations of two simulated streams
with potential parameters and different rotation curve perturbations.

LM10 found these to be the best fit for the Sagittarius Dwarf tidal stream, and if

they are the best fit for the true Galactic halo, we would like to determine if two

simulated streams can find a halo of this shape. We use the same stream kinematics

as in the previous subsections. The detections for the two triaxial streams are given

in Tables 3.23 and 3.24. The streams are shown in Figure 3.8.

A particle swarm optimization was performed, and the best fit parameters are
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l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
75 27.90 0.25 -231 5 27.3 0.4
100 44.46 0.25 -213 5 16.1 0.5
125 53.98 0.25 -160 5 13.4 1.0
150 56.43 0.25 -104 5 10.6 0.8
171 55.21 0.25 -56 5 11.0 0.9
200 45.30 0.25 42 5 10.1 0.4
225 24.88 0.25 154 5 11.2 0.4
250 -4.82 0.25 224 5 20.6 0.4

Table 3.23 Stream 1 dataset for triaxial logarithmic halo with vhalo,t = 115 km s−1,
q1 = 1.38, qz = 1.36, dt = 12 kpc, and φ = 97◦.

l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
150 34.81 0.5 41 5 60.2 3.0
175 44.62 0.25 112 5 48.4 1.1
200 51.59 0.25 138 5 34.5 0.8
220 53.52 0.25 133 5 32.2 0.9
250 50.71 0.25 101 5 27.2 0.8
275 41.72 0.25 45 5 23.9 0.5
300 22.21 0.25 -57 5 23.7 0.7
325 -6.82 0.25 -151 5 32.8 1.3
350 -30.09 0.25 -150 5 45.7 1.6

Table 3.24 Stream 2 dataset for triaxial logarithmic halo with vhalo,t = 115 km s−1,
q1 = 1.38, qz = 1.36, dt = 12 kpc, and φ = 97◦.

given in Table 3.25. The fitness of this solution is χ2 = 1.60. The best fit and true

orbits are shown, along with the stream detections, in Figure 3.9. We can see that

overall the fit to the halo flattenings q1,qz and the angle φ are consistent to within

errors. The halo scale length d, however, is not.

3.3.3 Two Simulated Streams: Unknown Spherical + Triaxial Halo

The final case we will consider is that of fitting two tidal streams within a

halo that is composed both of triaxial and spherical components. The motiva-

tion behind this is the possibility that the Galactic halo may be triaxial near the

center of the Galaxy, but become spherical at large distances from the Galactic

center. We will therefore consider the case of a gravitational potential that is the

sum of a triaxial and spherical logarithmic potentials. The parameters for the tri-
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Figure 3.8 Simulated tidal streams in triaxial logarithmic halo with vhalo,t =
115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, and φ = 97◦. Top panel shows
both streams and true orbits in (l, b) sky coordinates. Middle shows both streams
radial velocity vgsr as a function of l, while bottom shows perturbed distances dSun

as a function of l.

axial halo are the same as the previous subsection: (vhalo,t, q1, qz, dt, and φ) =

(115 km s−1, 1.38, 1.36, 12 kpc, 97◦). The large spherical halo will have parameters

(vhalo, d) = (200 km s−1, 50 kpc).

A particle swarm optimization was conducted, the best fit parameters being

given in Table 3.28. The fitness of this solution is χ2 = 1.73. The best fit and true

orbits are shown, along with the stream detections, in Figure 3.11. We can see that

these two streams are incapable of fitting the scale length and mass of the external

spherical halo to within errors. We will pursue fitting this halo in the next section

with three streams.

3.3.4 Discussion

The findings of this section are enumerated as follows:
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Parameter Value
R1 10.2 ± 0.7 kpc
v1,x −90 ± 7 km s−1

v1,y −299 ± 11 km s−1

v1,z −101 ± 8 km s−1

R2 30.8 ± 2.2 kpc
v2,x −198 ± 13 km s−1

v2,y 103 ± 12 km s−1

v2,z 102 ± 11 km s−1

vhalo 121 ± 10 km s−1

q1 1.25 ± 0.12
qz 1.29 ± 0.10
d 16.6 ± 1.7 kpc
φ 96◦ ± 10◦

χ2 1.60

Table 3.25 Best particle swarm fit of kinematic and potential parameters of two
simulated streams in triaxial halo.

l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
75 31.28 0.25 -228 5 20.8 0.3
100 46.96 0.25 -200 5 13.0 0.4
125 54.86 0.25 -152 5 11.2 0.5
150 56.70 0.25 -102 5 10.3 0.6
170 55.12 0.25 -56 5 11.1 0.6
200 44.94 0.25 34 5 10.5 0.5
225 25.26 0.25 135 5 11.1 0.3
250 -2.08 0.25 204 5 16.6 0.3

Table 3.26 Stream 1 dataset for triaxial+spherical logarithmic halo with vhalo,t =
115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦, vhalo = 200 km s−1 and
d = 50 kpc.

• Two tidal streams are capable of doing what one cannot. Halo parameters such

as the Z-direction flattening are well fit in axisymmetric halos. Flattenings and

halo orientation angles are well fit in triaxial halos. Both of these are provided

that the radial velocity errors are large enough to allow the orbit fit to seek

an overall global minimum.

• Halo scale lengths are not well fit by the two streams analyzed above.

• The combination triaxial+spherical halo is not well recovered by two streams.



57

   90
   45
    0

  -45
  -90

b 
(d

eg
)

Stream 1 True Orbit
Stream 2 True Orbit

Stream 1 Fit Orbit
Stream 2 Fit Orbit

  300

  200

  100

   0

 -100

 -200

 -300

v 
(k

m
/s

)

   75

   50

   25

   0
 0 50 100 150 200 250 300 350

d_
S

un
 (

kp
c)

l (deg)

Figure 3.9 True and best fit orbits in triaxial halo. Top panel shows (l, b) coordinates,
middle panel shows (l, vgsr), and bottom panel (l, dSun).

l (◦) b(◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
175 45.55 0.25 42 5 38.2 1.0
200 51.45 0.25 112 5 34.5 0.6
220 53.62 0.25 135 5 30.7 0.8
250 51.25 0.25 126 5 27.3 0.6
275 43.05 0.25 82 5 23.7 0.6
300 25.93 0.25 -13 5 24.2 0.8

Table 3.27 Stream 2 dataset for triaxial+spherical logarithmic halo with vhalo,t =
115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦, vhalo = 200 km s−1 and
d = 50 kpc.

3.4 Three Stream Fitting: Including a Sagittarius Dwarf

Emulator

We now move to fitting three tidal streams within a simulated Galactic po-

tential. The previous section showed that flattening and orientation quantities are

well recovered by the two streams previously analyzed. However, any model of the

Galaxy must include the Sagittarius Dwarf Tidal Stream (Sgr). Since Sgr spans the
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Parameter Value
R1 10.0 ± 0.6 kpc
v1,x −107 ± 9 km s−1

v1,y −324 ± 11 km s−1

v1,z −107 ± 8 km s−1

R2 30.9 ± 1.2 kpc
v2,x −224 ± 15 km s−1

v2,y 131 ± 14 km s−1

v2,z 99 ± 12 km s−1

vhalo,t 128 ± 17 km s−1

q1 1.27 ± 0.15
qz 1.39 ± 0.16

dhalo,t 10.6 ± 1.6 kpc
φ 100◦ ± 18◦

vhalo 171 ± 20 km s−1

dhalo 21.5 ± 1.6 kpc
χ2 1.73

Table 3.28 Best particle swarm fit of kinematic and potential parameters of two
simulated streams in triaxial+spherical halo.

entire sky and has a well-known progenitor. We endeavour to see if including an

emulator of this stream will provide constraints on the halo scale length.

3.4.1 Generation of a Test Sgr Stream

The first model of the Sgr tidal stream that satisfies all sky position, radial

velocity, and distance constraints was developed by Law and Majewski (2010, LM)

by fitting a dwarf galaxy evolving in a triaxial Galactic halo. Prior to this, Law,

Johnston and Majewski (2005, LJM) published a near-consistent model using the

axisymmetric logarithmic halo.

These two models differ slightly in their initial kinematics. For the pur-

poses of this section, though, we simply wish to see if a simulated dwarf galaxy

stream can be fit, and have its kinematics recovered. We therefore select kinemat-

ics consistent with the LJM 2005 model: (l, b, R, vx, vy, vz) = (5.6◦,−14.2◦, 28 kpc,

238 km s−1,−42 km s−1, 222 km s−1). Dwarf parameters of MSgr = 1 × 109 Msun ≈
4498.66 Mu. With a dwarf galaxy, the effects of energy segregation described in

the previous chapter become more pronounced. We therefore include distance scale
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Figure 3.10 Simulated tidal streams in triaxial+spherical halo with vhalo,t =
115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦, vhalo = 200 km s−1

and d = 50 kpc. Top panel shows both streams and true orbits in (l, b) sky coor-
dinates. Middle shows both streams radial velocity vgsr as a function of l, while
bottom shows perturbed distances dSun as a function of l.

factors in stream fitting. We will also present the simulated Sgr stream in the

Sagittarius Dwarf coordinate system (θ = ΛSgr,GC, φ = BSgr,GC).

As LJM and LM have concluded that an axisymmetric halo is insufficient to

represent the Galactic halo mass distribution, we will not consider three stream

fitting in this case. Instead, we will consider the triaxial and triaxial+spherical

cases given in the previous section.

The simulated Sgr stream in the triaxial halo is shown in Figure 3.12, with

detections given in Table 3.29. The simulated Sgr stream in the triaxial+spherical

halo is shown in Figure 3.13, with detections given in Table 3.30.

A particle swarm optimization was performed, with best fit parameters given

in Table 3.31. The fitness of this solution is χ2 = 4.67, and scale factors of SLeading =

1.00 and STrailing = 0.59 were fit. The best fit and true orbits for Streams 1 and 2
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Figure 3.11 Top panel shows true and fit orbits in (l, b) coordinates, middle panel
shows (l, vgsr), and bottom panel (l, dSun) for triaxial+spherical halo with vhalo,t =
115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦, vhalo = 200 km s−1 and
d = 50 kpc.

are shown, along with the stream detections, in Figure 3.14. The simulated Sgr fit

orbit with detections is shown in Figure 3.15.

For the case of the triaxial+spherical halo, a particle swarm optimization was

performed, with best fit parameters shown in Table 3.32. The fitness of this solution

is χ2 = 8.11, and scale factors of SLeading = 1.00 and STrailing = 0.76 were fit. The

best fit orbits are shown in Figures 3.16 and 3.17 and It is clear that the three

streams modeled here cannot successfully reproduce the parameters of a combination

triaxial+spherical halo.

As a final case before moving on to real streams, we fit the streams generated

in the triaxial + spherical halo with orbits in a triaxial halo. Suppose the ”true”

Galactic halo was a combination of triaxial and spherical. The aim of this test

is to see whether a simple triaxial fit would converge in this case. We utilize the

same streams created in the triaxial+spherical case above, and a particle swarm
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ΛSgr,GC (◦) BSgr,GC (◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
275 -0.92 4.26 14 3 76.4 3.2 L
290 -0.12 3.47 66 2 76.3 2.4 L
300 -4.88 7.02 110 27 72.5 2.5 L
325 -2.06 4.04 163 4 44.9 2.6 L
350 -1.45 4.11 180 1 32.9 0.4 L
5 -1.59 1.90 177 4 33.2 1.6 T
25 -2.21 4.64 127 10 36.3 9.2 T
50 -2.40 5.00 17 7 28.9 5.3 T
75 -2.20 19.92 -78 4 27.7 3.4 T
100 -0.26 16.71 -139 5 42.1 3.1 T
125 1.71 9.62 -144 4 64.4 2.0 T
150 1.67 8.45 -71 4 102.9 3.0 T
165 3.52 27.51 8 11 118.8 5.6 T

Table 3.29 Sgr dataset for triaxial logarithmic halo with vhalo,t = 115 km s−1, q1 =
1.38, qz = 1.36, dt = 12 kpc, φ = 97◦. Leading and trailing stream segments are
denoted L and T, respectively.

optimization gives a best fit χ2 of 84.3. We therefore conclude that if a stream

is evolving within a triaxial+spherical halo, we are unable to fit it with a simple

triaxial model.

3.5 Discussion

This completes our study of fitting orbits to simulated tidal streams chosen to

mimic the GD-1, Orphan, and Sagittarius streams. The effective conclusions of this

chapter are given as follows.

• Stream kinematics for our simulated streams can be constrained in spherical

halos, with or without rotation curve fitting.

• Adding halo rotation curves to stream fits aids in finding the best fit halo

parameters.

• The total mass of a spherical halo is well constrained, even when the halo is a

different model than that used to create the stream.

• Fits of the flattening q suffer systematic biases. We have shown these biases to

be caused by the dispersion in stream quantities, and if the stream mirrored
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ΛSgr,GC (◦) BSgr,GC (◦) δb (◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
25 -2.39 0.97 114 11 27.9 2.3 T
50 -0.50 0.85 51 3 19.5 0.7 T
100 1.13 0.99 -118 3 29.3 1.5 T
125 1.12 0.63 -124 3 32.0 0.9 T
150 2.66 0.38 -51 3 45.2 1.3 T
175 3.42 0.37 74 4 42.9 1.3 T
200 5.55 0.41 148 4 34.5 2.1 T
100 -5.14 3.10 178 6 18.4 2.6 L
150 -7.18 2.49 -12 18 12.7 3.8 L
200 -8.11 2.01 -147 4 14.4 0.7 L
250 -3.70 0.91 -159 4 25.7 1.1 L
300 -0.83 0.52 -1 2 45.5 1.1 L
350 -1.32 0.42 167 3 33.8 1.4 L

Table 3.30 Sgr dataset for triaxial+spherical logarithmic halo with vhalo,t =
115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦, vhalo = 200 km s−1

and d = 50 kpc.

its orbit perfectly, the halo flattening can be recovered.

• Our clipped mean technique, while accurately determining stream quantities

and errors, causes the optimization algorithm to converge to poor minima.

This is especially apparent at the ends of streams, where the radial velocity of

the stream can deviate from the orbit’s prediction. Expanding radial velocity

and angle errors to experimentally appropriate levels alleviates this difficulty,

and leads to good fits.

• Gradient search is an effective method for finding best fit kinematics of a

single stream in a known potential, but quickly collapses when more streams

and parameters are introduced. We have therefore adopted particle swarm

optimization as the method of choice for multiple streams.

• Two streams chosen to mimic the GD-1 and Orphan Streams in a triaxial halo

are able to constrain the structure parameters (mass and flattenings), but are

unable to recover the scale length. The constraints on the scale length are

obtained by introducing a Sgr emulator stream.
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Figure 3.12 Simulated Sgr tidal stream in triaxial halo. Top panel shows true and
fit orbits in (ΛSgr,GC, BSgr,GC) coordinates, middle panel shows (ΛSgr,GC, vgsr), and
bottom panel (ΛSgr,GC, dSun) for triaxial halo with vhalo,t = 115 km s−1, q1 = 1.38,
qz = 1.36, dt = 12 kpc, φ = 97◦.

• We are unable to recover parameters from a triaxial+spherical halo with three

streams.

• Given a true halo that is triaxial+spherical, stream parameters are not recov-

ered when fit with a triaxial model. This provides two a crucial insights: we

are able to determine that a triaxial halo is not a good fit to streams gener-

ated in a triaxial+spherical halo, and conversely, if true streams are not fit

well in a triaxial halo, an additional halo component may be responsible for

the discrepancy.
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Figure 3.13 Simulated Sgr tidal stream in triaxial+spherical halo. Top panel
shows true and fit orbits in (ΛSgr,GC, BSgr,GC) coordinates, middle panel shows
(ΛSgr,GC, vgsr), and bottom panel (ΛSgr,GC, dSun) for triaxial+spherical halo with
vhalo,t = 115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦, vhalo = 200 km s−1

and d = 50 kpc.
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Parameter Value
R1 10.5 ± 0.7 kpc
v1,x −94 ± 7 km s−1

v1,y −310 ± 9 km s−1

v1,z −104 ± 8 km s−1

R2 31.1 ± 2.1 kpc
v2,x −200 ± 13 km s−1

v2,y 107 ± 11 km s−1

v2,z 103 ± 12 km s−1

R3 28.8 ± 3.9 kpc
v3,x 238 ± 19 km s−1

v3,y −30 ± 10 km s−1

v3,z 231 ± 6 km s−1

vhalo,t 121 ± 6 km s−1

q1 1.29 ± 0.09
qz 1.25 ± 0.06

dhalo,t 11.7 ± 0.9 kpc
φ 101◦ ± 8◦

χ2 4.67

Table 3.31 Best particle swarm fit of kinematic and potential parameters of three
simulated streams in triaxial halo.
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Figure 3.14 Best fit and true orbits for Streams 1 and 2 in triaxial halo with vhalo,t =
115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦.
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Figure 3.15 Best fit and true orbits for Stream 3 in triaxial halo with vhalo,t =
115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦. Overlayed is a 10,000 parti-
cle N-body run with the fit parameters evolved over 4 Gyr. We see good agreement
in sky position and radial velocity, and consistent agreement in stream distance.
Fitting the orbits with distance scale factors is a good first-order approximation to
fitting the actual N-body stream distances.
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Parameter Value
R1 9.7 ± 1.0 kpc
v1,x −101 ± 21 km s−1

v1,y −314 ± 8 km s−1

v1,z −104 ± 22 km s−1

R2 30.8 ± 1.7 kpc
v2,x −206 ± 11 km s−1

v2,y 115 ± 9 km s−1

v2,z 97 ± 10 km s−1

R3 26.0 ± 0.7 kpc
v3,x 254 ± 9 km s−1

v3,y −41 ± 9 km s−1

v3,z 240 ± 7 km s−1

vhalo,t 132 ± 13 km s−1

q1 1.11 ± 0.09
qz 1.32 ± 0.08

dhalo,t 7.9 ± 2.3 kpc
φ 81◦ ± 10◦

vhalo 139 ± 24 km s−1

dhalo 33.5 ± 7.6 kpc
χ2 8.11

Table 3.32 Best particle swarm fit of kinematic and potential parameters of three
simulated streams in triaxial+spherical halo.
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Figure 3.16 Best fit and true orbits for Streams 1 and 2 in triaxial+spherical halo
with vhalo,t = 115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦, vhalo =
200 km s−1 and d = 50 kpc.
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Figure 3.17 Best fit and true orbits for Stream 3 in triaxial+spherical halo with
vhalo,t = 115 km s−1, q1 = 1.38, qz = 1.36, dt = 12 kpc, φ = 97◦, vhalo = 200 km s−1

and d = 50 kpc. Overlayed is a 10000 particle N-body run with the fit parameters
evolved over 4 Gyr. We see good agreement in sky coordinates and radial velocities,
but poor agreement in distances.



CHAPTER 4

ORBIT FITTING OF GALACTIC TIDAL STREAMS

The previous chapter demonstrated the robustness of the orbit fitting method in-

troduced in Chapter 2. We now apply this method to actual tidal streams orbiting

the Galaxy. Before a full simultaneous model can be created for the Galaxy, we

will discuss the individual tidal streams to be considered. Models for each of these

streams will be developed, after which they will be merged into a full simultaneous

orbit fit. The streams that will be considered in this chapter are the Stream of

Grillmair and Dionatos (GD-1), the Cetus Polar Stream, and Orphan Stream, and

the Sagittarius Dwarf Tidal Stream (Sgr).

4.1 The Stream of Grillmair and Dionatos (GD-1)

Grillmair and Dionatos (2006), hereafter GD, announced the detection of a 63◦

cold stellar stream in the Galactic halo (the stream itself we refer to henceforth as

GD-1, following GD), using stellar density counts extracted from the Sloan Digital

Sky Survey (SDSS; York et al. 2000). This stream is extremely narrow, less than

0.25◦ degrees in width, which is less than 50 pc at their measured distances of 7.3 to

9.1 kpc from the Sun. GD therefore concluded that the progenitor was a globular

cluster, but the progenitor remains unidentified and could be completely disrupted.

Willett et al. (2009) re-extracted the GD-1 stream from SDSS, and supplemented

this extraction with radial velocities and metallicities from the Sloan Extension

for Galactic Understanding and Exploration (SEGUE, Yanny et al. 2009). This

additional kinematic information allowed constraints to be placed on the orbit of

the GD-1 stream. The extraction of the stream and the stream’s orbital properties

will be reiterated here.

Portions of this chapter previously appeared as: Willett, B. A., Newberg, H. J., Zhang, H.

T., Yanny, B., Beers, T. C. 2009, ”An Orbit Fit for the Grillmair Dionatos Cold Stellar Stream,”

Astrophysical Journal, 697, p. 207; Newberg, H. J., Yanny, B., Willett, B. A. 2009, ”Discovery

of a New, Polar-Orbiting Debris Stream in the Milky Way Stellar Halo,” Astrophysical Journal,

700L, p. 61N; and Newberg, H. J., Willett, B. A., Yanny, B., Xu, Y. 2010, ”The Orbit of the

Orphan Stream,” Astrophysical Journal, 711, p. 32N.

71
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4.1.1 Photometric Selection

The GD-1 stream was identified in SDSS DR7 by first selecting all stars in the

north Galactic cap, and applying color-magnitude filtering techniques using fiducial

sequences of known globular clusters. By shifting the filter in magnitude space, we

can obtain an estimate of the stream distance, as well as select stream members.

Figure 4.1 shows a density map of stars isolated from an M92 fiducial sequence

shifted to m − M = 14.76. The stream is shown spanning from RA = 130◦ at

Region 1 to RA = 220◦ at region 7. Utilizing an F-turnoff magnitude of +4.2 (Cole

et al. 2008), the M92 shift suggests a stream distance of 7 to 10 kpc.
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Figure 4.1 A Hess diagram of stars in the SDSS footprint which are within the color
and magnitude range of the M92 fiducial sequence shifted to m−M = 14.76. The
GD-1 stream arcs faintly from (α, δ) = (220◦, 58◦) to (126◦, 0◦). Seven regions where
spectroscopy of GD-1 stream star candidates have been obtained are numbered.
Squares indicate regions where the stream was clearly found in velocity, and circles
indicate additional plates that may contain stream stars.

4.1.2 Photometric Distance estimation

We estimate the distance to the GD-1 stream at the positions of each of the

seven regions that it overlaps using a matched filter algorithm. We first generated

a Hess diagram from SDSS DR7 data from a region about 0.5◦ wide in RA and 1◦
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wide in Dec in the vicinity of each plate, centered on the GD-1 stream. Then a Hess

diagram of the background was generated from two regions of sky with the same

angular extent on the sky, but offset 1.5◦ higher and 1.5◦ lower in declination. The

background Hess diagram (divided by two to correct for the difference in sky area)

was subtracted from the corresponding Hess diagram on the GD-1 stream.

We constructed an M92 filter Hess diagram with the similar method to Grill-

mair (2009). We first broaden the M92 fiducial sequence from An et al. (2008) with

the SDSS photometric errors. Because we do not have a luminosity function for M92

stars, we used the luminosity function of M13, estimated from SDSS survey counts

vs. magnitude for stars away from the core of M13, to create the Hess diagram. We

assume the distance to M92 is 8.2 kpc. Utilizing the background-subtracted Hess

diagrams, the M92 fiducial, and its known distance, we can determine the distance

to the stream for every region where a Hess diagram exists. The distance and cor-

responding error of each of the seven points along the stream with SEGUE spectra

are listed in Table 4.1.

We note that the estimated distances to individual regions are in very good

agreement with those quoted by Grillmair and Dionatos (2006).

4.1.2.1 Spectroscopy

The SEGUE survey, which is one of three surveys carried out as part of SDSS-

II, obtained spectra of approximately 240,000 Milky Way stars toward ∼ 200 sight-

lines that each covered seven square degrees of the sky, with an emphasis on ob-

taining spectra of fainter halo stars. While most of SEGUE’s 200 observing tiles

were randomly distributed across the SDSS imaging footprint, a few were placed on

streams of known interest, including the GD-1 stream.

All SEGUE spectra were processed through the standard SDSS spectroscopic

reduction pipelines (Stoughton et al. 2002), from which radial velocities accurate to

about 10 km s−1 for objects at g ∼ 19.5 were determined. In addition, the stellar

spectra were processed through the SEGUE stellar parameter pipeline (SSPP; Lee et

al. 2008a, 2008b; Allende Prieto et al. 2008) in order to obtain abundance ([Fe/H]),

surface gravity (log g), and other atmospheric parameter estimates.
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We select from the SDSS-II/SEGUE DR7 database all measured parameters

of the 12, 825 spectra of stars within 1.3◦ of the GD-1 stream and within the M92

color-magnitude sequence. Most of the 4568 remaining spectra are concentrated

in 3◦ diameter patches centered on SEGUE tiles, but some are part of the SDSS-I

and SDSS-II Legacy surveys. These latter surveys targeted nearly the entire SDSS

footprint spectroscopically, but with few and limited signal-to-noise on stellar targets

(since the SDSS Legacy survey primarily targets galaxy and quasar candidates).

Figure 4.2 The line-of-sight, Galactocentric standard of rest velocity versus Galactic
longitude for SEGUE and SDSS stars for which we have spectra, and which are
close in color-magnitude space to the fiducial sequence of M92 and close (within
1.3◦) in projected distance to the GD-1 stream shown in Figure 4.1. A sine curve
with amplitude 110 km s−1 is shown to indicate the locus of stars rotating with
the Sun about the Galactic center. Stars in the halo will have velocities centered
on vgsr = 0 and a large σ ∼ 100 km s−1 dispersion. Regions where GD-1 stream
candidates are followed up on are numbered 1-7. Note in particular the groups of
stars at vgsr ∼ −90 km s−1 in regions 5 and 6.

We show in Figure 4.2 the line-of-sight, Galactic standard of rest velocities,

vgsr, for each star in the sample, as a function of Galactic longitude. We calculate
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vgsr using: vgsr = RV + 10.1 cos b cos l + 224 cos b sin l + 6.7 sin b, where RV is

the heliocentric radial velocity in km s−1 and (l, b) are the standard, Sun-centered

Galactic coordinates of each star. A sine curve with amplitude 110 km s−1 traces

an approximate locus of nearby disk stars co-rotating with the Sun. Spheroid stars

occupy a broad range of vgsr centered at vgsr = 0. Seven regions of interest are

marked along the bottom of Figure 4.2, indicating areas with SEGUE plates, where

stars identified with the GD-1 stream will be selected. The positions of these seven

regions on the sky in equatorial coordinates are also indicated with circles and

numbered in Figure 4.1. Regions 5 and 6 were specially targeted by SEGUE with a

tile directly on locations along the GD-1 stream.

From examination of Figure 4.2, it appears that there is an excess of stars off

the rotating disk locus at vgsr ∼ −90 km s−1 in regions 5 and 6. To confirm that

these are in fact GD-1 stream stars, we isolate the stars in regions 5 and 6 and plot

their velocity histogram in Figure 4.3.

The distribution in Figure 4.3 is overlayed with Gaussians for the thick disk

(dispersion of 30 km s−1 and an offset of µ ∼ 20 km s−1), and inner halo (dispersion

of 100 km s−1). A significant peak is detected at vgsr ∼ −82 km s−1 which we

associate with the GD-1 stream member stars.

We next examine the metallicity distribution of stars in this velocity peak in

order to estimate the elemental abundance of the GD-1 stream. Later we will show

that the individual vgsr velocities in regions 5 and 6 are 71 ± 2 and 87 ± 2 km s−1,

respectively, so we chose a “peak” velocity range of −97 < vgsr < −61 km s−1.

Figure 4.4 shows the SSPP abundance estimates for all stars with good metal-

licity estimates (for a good estimate a turnoff star generally needs to be brighter

than about g ∼ 19). Errors on individual stars [Fe/H] are approximately 0.3 dex

for spectral type F objects with g < 18.5. The histogram for all abundances of

stars in regions 5 and 6 are plotted with a light line (1311 stars), those for stars

in the velocity peak of Figure 4.3 are indicated with a heavy line (115 stars). The

stars with velocities of the GD-1 stream are heavily biased towards lower metal-

licity stars, compared with those of the thick disk ([Fe/H] ∼ −0.7), or inner halo

([Fe/H] ∼ −1.6).
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Figure 4.3 All stars with spectra from Figure 4.2 towards regions 5, 6 of Figure 4.1
are histogrammed in Galactocentric velocity. Gaussians are overlaid representing a
thick disk and halo distribution toward this direction. The candidate GD-1 stream
stars at about vgsr ∼ −82 km s−1 cannot be explained by either a halo or thick disk
distribution.

We estimate from Figure 4.3 that about 30 stars in the spectroscopic dataset

are from the GD-1 stream. To see the metallicity distribution of the stars in the

GD-1 stream, we subtract a scaled version of the histogram with the light line from

the histogram with the heavy line. The scaling factor is (115-30)/(1311-30). Since

the stars in the velocity selected region contain a smaller fraction of thick disk

stars, the subtracted histogram is oversubtracted at high metallcities, and likely

undersubtracted at spheroid metallcities. The mean of the stars in the shaded

region is [Fe/H]=-1.9, but the real metallicity of the stream is probably somewhat

lower than this. Bins with negative counts do not appear in Figure 4.4.

We now return to the sample of stars in Figure 4.2, and select only those of

very low metallicity (−2.3 < [Fe/H] < −1.65) in order to isolate stream members

from the thick disk and halo field star populations. The low metallicity spectra
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Figure 4.4 Histogram of SSPP metallicities for all stars (light line) and for stars with
−97 < vgsr < −61 km s−1 (heavy line). The velocity-selected peak has an excess
of stars with metallicity lower than that of the halo. The hashed line indicates a
correction to the heavy line for interlopers at other velocities which have the same
metallicities as candidate stream stars. This figure suggests that the peak metallicity
of the GD-1 stars is lower than [Fe/H]=-1.9.

with positions, colors, and magnitudes that make them candidates for GD-1 stream

members are shown in Figure 4.5. Several velocity peaks are now clearly separated

from the disk and spheroid. We now examine stars in each of the seven regions

numbered in Figure 4.5 and determine their observational properties.

In each region with a clear stream detection, the velocity and velocity dis-

persion for the GD-1 stream were computed using an iterative method that used

only stars within one standard deviation of the mean velocity. We computed the

mean and standard deviation of the stars near the velocity peak. Then, we selected

stars that were within one standard deviation of the mean and re-computed the

mean and standard deviation. The standard deviation calculated this way is an

underestimate, since we have removed the tails of the distribution. We corrected

the standard deviation assuming Gaussian tails. This process was repeated until the
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Figure 4.5 The subset of stars from Figure 4.2 with SSPP metallicities −2.3 <
[Fe/H] < −1.65 are presented. Now the counter-rotating GD-1 stream stars stand
out more clearly against their field contaminants compared with Figure 4.2. Regions
1,4,5 and 6 have clear peaks; the mean and the error on the mean for these peaks
are indicated by the position and height of the rectangles at these four longitude
locations. The circles in regions 2, 3, and 7 indicate the area through which the
stream should pass if our model is correct. All areas except region 7 seem to have
an excess of stars with the expected stream velocities.

computed mean and standard deviation matched the mean and standard deviation

used to select the stars in the stream.

4.1.3 The Observed Stream Properties

The observed properties of the stars in the seven GD-1 stream candidate re-

gions are summarized in Table 4.1, where we list region number (N); ; Galactic

coordinates (l, b) with errors (we use δ to denote a measured error, to distinguish

it from the intrinsic dispersion, which we denote with the symbol σ); the average

Galactocentric standard of rest velocity with an error, and the velocity dispersion.

The velocity mean and dispersion were calculated as described previously. The
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tabulated intrinsic dispersions are upper limits to the actual velocity dispersion of

the stream; since they are similar in size to the velocity errors for each individual

spectrum, the measurement is consistent with an intrinsic velocity distribution of

zero. The error in the mean is the velocity dispersion divided by the square root

of the number of stars used to compute it. Regions 2, 3, and 7 do not have clear,

narrow peaks in the velocity distributions and therefore were not used to fit the

orbit, though Figure 4.5 shows there are excess stars at about the right velocities.

N l (◦) b(◦) δb (◦) vgsr δvgsr σv dSun δdSun µl µb

1 224.47 20.88 0.5 108 5 11 10.4 1.2 7.0 -6.4
2 215.93 30.83 0.2 69 6.5 0.6 8.6 -7.4
3 206.03 40.89 0.2 7.0 0.4 10.0 -7.3
4 197.00 47.54 0.2 -7 1 3.9 7.5 0.3 10.9 -6.5
5 172.30 57.24 0.2 -71 2 5.3 8.0 0.5 11.8 -2.4
6 161.95 59.02 0.2 -87 2 9.2 8.8 0.8 11.5 -0.6
7 99.95 55.00 1.0 9.9 1.2 4.1 5.2

Table 4.1 GD-1 Stream detections, with velocities in km s−1, distances in kpc and
proper motions in mas yr−1.

We now calculate our best metallicity estimate for GD-1 by selecting only

the 48 stars with spectra in Figure 4.6. We note that these stars were pre-cut on

metallicity at an earlier stage (Figure 4.5) to have −2.3 < [Fe/H] < −1.65. A his-

togram with bins similar to the measurement error yields a GD-1 stream metallicity

of [Fe/H]= −2.1±0.1 dex with a dispersion of σ = 0.3 dex (essentially the measure-

ment error). In addition to these statistical errors, there may be systematic errors

in the metallicity determinations from SDSS DR7 of ∼ 0.2 dex (Allende Prieto et

al. 2008).

4.1.4 Orbit Fitting

We now use the data listed in Table 4.1 and the method of Chapter 2 to fit an

orbit to the GD-1 stream, assuming the fixed Galactic potential with a logarithmic

halo used in Chapter 3. We adopt values of vhalo = 115 km s−1, q = 1.0 and

d = 12 kpc.

Grillmair and Dionatos (2006) postulated the progenitor of this stream is a

globular cluster because it has a narrow width in the sky. As a cluster orbits the
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Figure 4.6 All stars in regions 1-7 with SEGUE spectra which meet the metallicity,
color, magnitude, velocity and proper motion cuts as described in the text are plotted
with colored points as indicated in the legend, along with estimated distance to each
set of points. Each set of points was shifted to the reference distance of 9 kpc, and
overlaid with a M92 fiducial locus, shifted to the same distance moduli. Note the
two (blue) points at g0 ∼ 15.3, which are actually at g0 ∼ 14.9 before shifting. These
are candidate BHB stars in the GD-1 stream, at a distance of 7.5 kpc from the Sun
in region 4.

Galaxy, stars farther from the progenitor will depart from the orbit due to dynamical

friction and scattering of the stream stars. Because the progenitor is presumed to be

a compact object with a few km s−1 velocity dispersion, it is reasonable to assume

that the stars in the tidal stream lie approximately on the orbit of the globular cluster

(Odenkirchen et al. 2003). Dwarf galaxies, on the other hand, will experience larger

spatial dispersions because they have larger dispersions in their energies. Therefore,

we fit the orbit to the positions and velocities of the stars in the tidal stream.

To find reasonable initial values for these parameters, we imagine placing

a test particle in region 5 at (l, b, R5) = (172.3◦, 57.24◦, 8.0 kpc). We then con-

struct a vector between the (l, b, R5) = (172.3◦, 57.24◦, 8.0 kpc) and (l, b, R6) =
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(161.95◦, 59.12◦, 8.8 kpc) points. This gives us the direction of the total velocity, be-

cause we are assuming the orbit passes through both of these points. The principle

initial values for the parameters in region 5 are (R5, vx,5, vy,5, vz,5) = (8.0 kpc, -94

km/s, -285 km/s, -104 km/s). In practice we start searching for the best parameters

in a range of values near these approximate values for the orbital parameters.

4.1.5 Results and Discussion

The metric we wish to minimize is a single stream fitness in (θ = l, φ =

b, vgsr, dSun), given in Equation 2.5. We select five initial sets of parameters and

perform the gradient descent to reach the best fit parameters. We then estimate the

parameter errors using the Hessian method of Equation 2.18. The best-fit parame-

ters and their errors are (R5, vx,5, vy,5, vz,5) = (8.4±0.8 kpc,−89±2 km s−1,−236±
6 km s−1,−115 ± 3 km s−1). The chi-squared of this fit is 2.07. The negative

velocities indicate a retrograde orbit. The perigalacticon for this orbit is located

r = 14.43 ± 0.5 kpc from the Galactic center at (l, b) = (158◦, 60◦), near region 6.

The space velocity of stars in the model at this position is 276 km s−1. The apogalac-

ticon is at r = 28.7 ± 2 kpc from the Galactic center, toward (l, b) = (306◦,−35◦),

though we do not observe this direction on the sky. All errors are 1σ.

As was demonsrated in Chapter 3, the orbital parameters are fairly insensitive

to the choices of parameters in the Galactic potential.

The potential assumed in fitting the orbit is a standard logarithmic flat-

rotation curve dark matter halo plus a stellar disk. Since the GD-1 stream ap-

proaches within 15 kpc of the Galactic center, the effects of the massive disk are felt

by the orbit, and increasing the relative mass of the disk vs. the halo can mimic

the effects of a flattened halo. At perigalacticon, the disk exerts twice as much

gravitational force as the halo. More models and constraints, from this and other

streams, are clearly needed to constrain the shape of the dark matter halo.

Figure 4.7 shows the orbit in (l, b) with the stream locations shown. The

model prediction is in very good agreement with the experimental observations. The

middle and lower panels of Figure 4.7 show the orbit in vgsr versus l and distance from

the Sun versus l. We also see good agreement with the experimental observation.
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Figure 4.7 Upper panel: Galactic coordinates. The best fit orbit (with fixed q, d)
to the data in the four regions 1,4,5 and 6. Region 1 is leftmost, with l = 224.47◦.
Galactic (l, b) for all seven regions described in the text are plotted as crosses.
Middle panel, plotting Galactocentric radial velocity vgsr vs. Galactic longitude l
for the best fit model and data. Regions 1,4,5 and 6 (left-to-right) have the smallest
error bars. Lower panel, plotting Sun-centered distance vs. Galactic longitude l to
the stream. The errors on regions 4, 5 and 6 are small; the error bars on the other
region data points are limited by how well the position of the stream turnoff (minus
a background field) can be identified in a color-magnitude Hess density diagram of
stream stars.

Figure 4.8 shows the orbit projected into the three planes of Galactic coordinates

(X, Y, Z). We deduce an orbital eccentricity e = 0.33±0.02 (one sigma error) and an

inclination to the Galactic plane of i ∼ 35 ± 5◦. Arrows show the relative direction

of the stream’s retrograde motion compared to the Milky Way.

The final columns of Table 4.1 show the predicted proper motions (µl, µb) for

stars in the stream at each region 1-7 based on the distances in Table 4.1. These

predictions may be compared with actual observed proper motions for stream star

candidates in Appendix A at each region. In general the agreement is quite good

for regions 2-6, given proper motion errors of 1σ = 3 mas yr−1 in each coordinate.
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Figure 4.8 Shown in heavy black line is the best fit orbit to the four regions 1,4,5 and
6 in Galactic rectangular coordinates (X, Y, Z) in each of the cardinal projections.
The coordinate system is a right-handed system with the Sun at at (-8,0,0) kpc
and the Galactic center at the origin. The coordinate and turnoff magnitude data
from the seven regions is converted to (X, Y, Z) assuming an absolute turnoff F
star magnitude of Mg = +4.2. The seven points are indicated with error bars
from distance error estimates. Regions 1 and 7 are indicated in each panel, with the
other regions falling in order at intermediate positions. The units of each axis is kpc.
An arrow originating at the Sun indicates the direction of Galactic rotation. The
arrows associated with the stream indicate the retrograde direction of motion of GD-
1 stream stars. The space velocity of the stream at perigalacticon is approximately
276 km s−1.

Spectral candidates more than 2σ away were excluded from Figure 4.6, dropping

about 20% of the candidates, leaving a generally good fit to a shifted M92 fiducial

sequence for these regions. Region 7 had fewer good proper motion matches, and it

is possible that we are not seeing GD-1 stream candidates here.

Figure 4.9 shows the photometrically selected stars with proper motions avail-

able near regions 1,4,5 and 6, along with an equivalent set of field stars (chosen

5 degrees away) for comparison. There’s a clear excess of ‘on-stream’ stars in the
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Figure 4.9 For the four regions N=1,4,5,6 where we have fitted the orbit, we select
stars within 0.3◦ of a cubic similar to equation 1 which have measured USNO-B
proper motions from the DR7 database. For reference, we select similar sets of
field objects offset by 5 degrees in declination from the on-stream objects. We then
sub-select stars with colors and magnitudes of stream turnoff candidates and plot
the µl vs µb of the on-stream (black dots) and off-stream (open circles) for each
selected region. There is a clear excess of on-stream points extending to the lower
right in each region. We superimpose crosses representing the point where the best
fit model (Table 4.1) crosses the stream, and show the derived tangential velocity in
the Figure. The cross always falls in the same quadrant with the excess of proper
motion points. Typical errors on each point are 3 mas yr−1 in each direction. The
upper and right axes in each figure convert the observed proper motions to tangential
velocities, assuming the distance to the stars is the distance to the fitted orbit for
that particular GD-1 stream region.

lower right quadrant of each region on-stream – these are likely stream members.

The estimated tangential velocities (relative to the Sun) are given.

To search for a possible progenitor, we selected all Milky Way globular clusters

from Harris (1996) that had metallicities in the range −2.5 <[Fe/H]< −1.5. Only

seven of these globular clusters (Terzan 8, Arp2, NGC 6809, NGC 6749, NGC

6341, NGC 6681, and NGC 6752) are within 5◦ of the GD-1 orbit. Additionally,
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we considered NGC 2298, which is 5.5◦ from the orbit, and has a metallicity of

[Fe/H] = −1.85. We compared the positions and velocities of these globular clusters

with an orbital path that extends all the way around the Milky Way. To create a

stream of this length would require a globular cluster to orbit the Milky Way for

on the order of gigayears, with the length depending on the concentration of the

progenitor, as well as the shape and location of the progenitor’s orbit. Of the eight

globular clusters, NGC 6809, NGC 6749, and NGC 6752 are ruled out because their

distances are more than a factor of two different from the distance to the orbit. The

remaining five clusters had radial velocities that are inconsistent with the predicted

orbit by more than 50 km/s. We therefore conclude that the Milky Way globular

cluster catalog published by Harris (1996) does not contain the progenitor of this

stream.

4.1.6 Conclusions

We use spectroscopic kinematic and abundance information to isolate stars in

the GD-1 stream, and use the positions and velocities of those stars to derive orbital

parameters for its orbit. The GD-1 stream is moving very rapidly on a retrograde

orbit around the Milky Way. In the region of the orbit which is detected, it has a

distance of about 7-11 kpc from the Sun. The stream’s orbit takes it to apogalactic

distances of 28.75±2 kpc, and it has a perigalacticon of 14.43±0.5 kpc, implying an

eccentricity of 0.33±0.02. The inclination to the Galactic plane is about i ∼ 35◦±5.

The metallicity of the stream is [Fe/H]∼ −2.1 ± 0.1 plus systematic errors of a few

tenths dex. None of the known globular clusters in the Milky Way have positions,

radial velocities, and metallicities that are consistent with being the progenitor of

the GD-1 stream.

The consistency between the proper motions of these stream candidates and

our best fit model gives us further confidence that we have identified stream members

and that our model accurately represents the path on the sky of the stream stars.

While we claim only consistency here between the proper motion data and our

model, we note that more detailed fits to the proper motion (in addition to the

radial velocities) for such nearby streams can be a crucial tool in constraining the
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halo potential shape and other parameters.

4.2 The Cetus Polar Stream

The Cetus Polar Stream was discovered by Newberg, Yanny and Willett (2009)

(NYW). Yanny et al. (2009b) noticed a co-moving population of low-metallicity blue

horizontal branch (BHB) stars with positions and velocities near, but not coincident

with, the Sagittarius trailing tidal tail. The piece of this stream that nearly intersects

with the Sgr tidal stream is at (l, b) = (140◦,−70◦) and at a distance of 34 kpc

from the Sun with a line-of-sight Galactic standard of rest radial velocity vgsr =

−50 km s−1 and metallicity [Fe/H] ≈ −2.0. In this section, we explore the extent

and kinematics of this new stream.

Figure 4.10 shows a color-magnitude diagram of all stellar objects in the South

Galactic Cap with zero proper motion and surface gravities of giant stars. Circled

observations have the velocity and metallicity we expect for the new tidal stream.

The three boxes labeled blue horizontal branch (BHB; −0.3 < (g − r)0 < 0.2, 0.8 <

(u− g)0 < 1.6, 17.7 < g0 < 18.4), red giant branch (RGB; −12.75(g− r)0 + 25.62 <

g0 < −12.75(g− r)0 + 27.12, 16.8 < g0 < 17.8), and lower red giant branch (LRGB;

0.47 < (g − r)0 < 0.53, 18.5 < g0 < 19.7) in Figure 4.10 have a relatively high

fraction of stars likely to be in the tidal stream, and comparison with M92 and M3

fiducials from An et al. (2008), shifted to 34 kpc, shows that they are also likely

to be from the same stellar population. From the BHB fiducials we extracted from

the An et al. (2008) data and distance moduli from Harris (1996), we estimate the

absolute magnitude of the BHBs in the color range −0.3 < (g − r)0 < −0.2, where

most of the BHBs lie, is Mg0 = 0.45.

The upper panel of Figure 4.11 shows the velocities of stars in the three color-

magnitude boxes in Figure 4.10. The ones with lower metallicity are circled. The

solid outline identifies stars with velocities of the Sgr trailing tidal tail (compare

with Law, Johnston & Majewski 2005; Yanny et al. 2009b; 60◦ < Λ⊙ < 140◦). The

dashed outline shows velocities of stars in the new stream. At higher Galactic lati-

tude we relied primarily on the locus of low metallicity RGBs to select the velocities

of stars in the new stream. The new stream has lower metallicity than those of the
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Sagittarius trailing tidal tail, as demonstrated by the fraction of larger to smaller,

point-like symbols within the upper outlined region compared with the lower region

with Sgr velocities.

The lower panel of Figure 4.11 explores the distance to the tidal stream, by

showing g0 vs. b for the stars in the upper plot that are likely stream members,

and photometrically selected BHBs in the region of the newly identified Cetus Polar

Stream.

We find an approximately linear relationship between g0 and Galactic latitude

(g0 = −0.0162b + 17.09) in this portion of the stream. Distances were estimated

and assuming Mg0 = 0.45.

Distance estimates are tabulated in Table 4.2, with only statistical errors in-

cluded. Distance errors may be systematically too high or too low by 10%, depending

on the determination of the absolute magnitude of BHBs (Sirko et al. 2004).

The four panels of Figure 4.12 show (upper left) an estimate of the positions

of the F turnoff stars in the CPS, and the positions of the photometrically selected

BHB stars; (upper right) the (l, b) distribution of spectra with colors and magnitudes

similar to those in the CPS; (lower left) the distribution of F turnoff stars in Sgr and

the CPS, with the stars with CPS velocities superimposed; and (lower right) the

same F turnoff stars with the stars with Sgr stream velocities superimposed. Note

that there is an overdensity of photometrically selected BHB stars that lines up with

the background-subtracted F turnoff star overdensity, and the CPS velocity-selected

BHB, RGB, and LRGB stars, running approximately along Galactic latitude l ∼
143◦. Stars that are velocity selected to be candidate Sgr stream stars follow a

different path in the sky, along the Sgr dwarf tidal tail as tabulated in Newberg et

al. (2003).

Table 4.2 summarizes the properties of the CPS at four Galactic latitudes,

shown in Figures 4.11 and 4.12. In addition to the position, velocity, and distance

of the stream as estimated from Figures 4.11 and 4.12, we list the approximate

velocity dispersion of the line-of-sight velocities (σv), and the number of spectra at

each location. The velocity dispersion for each stripe 76, 79, 82, and 86 is computed

from the spectra with 120◦ < l < 165◦ that are shown in the lower left panel of
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Figure 4.12, and tabulated in Table 4.2. Since the intrinsic SDSS/SEGUE radial

velocity errors are about 4 km s−1, the intrinsic velocity dispersion of the CPS is

about 4.5 km s−1 in stripes 76, 82, and 86, and about 10 km s−1 in stripe 79.

We fit an orbit to the four CPS locations in Table 4.2, following the procedure

outlined in Chapter 2. Due to the polar nature of this stream, the orbit was fit in

(θ, φ) = (b, l) space. The best-fit orbit is shown by the solid black lines in Figures

4.11 and 4.12. The orbits shown are for a logarithmic halo with vhalo = 115 km s−1,

q = 1.0 and d = 12 kpc. The best fit kinematics for CPS at (l, b) = (144◦,−71◦)

are (R, vx, vyvz) = (31.1 kpc,−103 km s−1, 80 km s−1, 76 km s−1). The fitness of

this solution is χ2 = 1.08. As expected from GD-1 and the single test streams of

Chapter 3, CPS places no useful constraints on the background halo parameters.

l (◦) δl (◦) b(◦) vgsr(km s−1) δvgsr(km s−1) dSun (kpc) δdSun (kpc)
144 2 -71 -29.8 6.4 36.1 1.9
144 3 -62 -42.7 6.5 33.8 1.8
142 3 -54 -39.2 11.1 31.8 1.7
142 4 -46 -59.2 5.8 30.1 1.6

Table 4.2 Cetus Polar Stream detections

The Cetus Polar Stream is, in principle, an extremely useful stream to model.

Its polar nature may allow it to be used to constrain the Z-direction flattening.

However, this stream has fewer detections than others available for study. Also, the

detections have imprecise sky coordinates and are thus less useful for constraining

the parameters of the Galactic potential. It is for these reasons that CPS will not be

modeled in the simultaneous orbit fit, presented later in this Thesis. In the future,

with more precise detections, this stream may provide useful constraints.

4.3 The Orphan Stream

The Orphan Stream, co-discovered by Grillmair (2006) and Belokurov et al.

(2006), is a stellar stream in the North Galactic Cap that is perpendicular to the

leading arm of the Sgr tidal tail. Grillmair (2006) was the first to publish a full

discovery paper, showing that the stream was at least 60◦ long and 2◦ wide, and

likely the remains of a small dwarf galaxy that has been completely disrupted.
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Figure 4.10 We show as small black dots the color and g0 magnitude for all the
SDSS DR7 stellar spectra in the South Galactic Cap (b < 0◦) with surface gravities
of giant stars (1 < log g < 4.0), and essentially zero proper motion (|µl| < 6 mas
yr−1, |µb| < 6 mas yr−1). These cuts select objects likely to be in the stellar halo.
The circles show those points that have velocities and metallicities consistent with
membership in the new stellar stream (−77 < vgsr < 0 km s−1, −4 < [Fe/H] <
−1.9. Stars with −0.3 < (g − r)0 < 0.2 are likely BHB stars, so for these stars we
used the SDSS [Fe/H]WBG metallicity measurement (blue circles). The stars with
0.3 < (g − r)0 < 0.8 are likely giant stars, so in this color range we used the SDSS
[Fe/H]a metallicity measurement (red circles). Fiducial sequences for M92 and M3,
shifted to 34 kpc, are shown for reference. Figure and caption from Newberg, Yanny,
and Willett (2009).

In Grillmair’s paper, the stream was characterized as about 21 kpc distant from

the Sun along the whole length of the stream. Belokurov et al. (2007) published

an independent discovery paper naming the Orphan Stream; they found a similar

length, width, and likely origin. However, Belokurov et al. found a strong distance

gradient, from 20 kpc at one end of the stream to 32 kpc from the Sun at the

other end. They also published “suggestive” velocities from sparse samples of Sloan
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Figure 4.11 Top panel shows Cetus Polar Stream candidate radial velocities as a
function of Galactic latitude b. Spectra with metallicities of −4 < [Fe/H ] < −1.9
are circled. The dashed boxed region shows the velocities of CPS stars, while the
solid boxed region shows those of the Sgr dwarf trailing tidal tail. We overlay
calculated velocities of thick disk stars with 50◦ < l < 190◦ (top to bottom) in
magenta to show there is no confusion with stream candidates. Filled circles in the
lower panel show the apparent magnitudes of the stars in the upper panel that have
metallicities and velocities expected of the CPS. The triangles show photometrically
selected BHB stars (see Yanny et al. 2000 for selection technique) for 120◦ < l <
165◦. The trend with b is consistent between photometrically and spectroscopically
selected BHBs. The solid black line in both panels shows the best fit orbit to the
CPS. Figure and caption from Newberg, Yanny, and Willett (2009).
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Figure 4.12 The upper left panel shows the density of turnoff stars in a CPS color
magnitude box (20.25 < g0 < 21.5, 0.22 < (g − r)0 < 0.36) minus the density of
stars in a Sgr box (20.35 < g0 < 21.85, 0.10 < (g − r)0 < 0.20) in polar Galactic
coordinates, origin at the SGP. The overdensities (dark areas) running along l = 140◦

from b = −70◦ up to b = −40◦ show the CPS. The blue dots in the upper left
panel show the positions (offset 3◦ in b for clarity) of photometrically selected CPS
candidate BHBs, with −0.0162b+ 16.94 < g0 < −0.0162b+ 17.24. Note the excess
along 130◦ < l < 150◦,−70◦ < b < −40◦. The upper right panel shows (magenta
circles) the locations of stars with SDSS/SEGUE spectra in the color-magnitude
selection boxes of Figure 4.10, showing the completeness coverage of the spectroscopy
relative to the imaging. The lower left panel shows the density of turnoff stars with
20.5 < g0 < 22.5, 0.26 < (g − r)0 < 0.30, (u − g)0 > 0.4, highlighting both the Sgr
and Cetus debris streams (the Sgr tidal stream is more prominent). The filled circles
show the stars with velocities and metallicities consistent with membership in the
new CPS, color coded by spectral type. The heavy black curve shows the best fit
orbit for the CPS structure. The lower right panel shows (crosses) the positions
of low metallicity stars with spectra in the upper panel of Fig. 4.11 that have the
velocities of the Sgr trailing tidal tail (the low metallicity subset of SDSS/SEGUE
Sgr spectra), along with a Sgr locus (heavy line). Figure and caption from Newberg,
Yanny, and Willett (2009).
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Digital Sky Survey (SDSS) data in two fields, ranging from VR = -40 km s−1 at the

close end of the stream to ∼ 100 km s−1 at the distant end of the stream. They

noted that the dwarf galaxy Ursa Major II, the HI clouds of Complex A, and a

number of anomalous globular clusters (including Ruprect 106 and Palomar I) lie

near the same great circle as the Orphan Stream stars.

Newberg, Willett, Yanny and Xu (NWYX, 2010) performed an extemely de-

tailed re-extraction of the Orphan stream in BHBs. The stream, as it appears on

the sky, is shown in F-turnoff stars in Figure 4.13. Their work is relevant to this

Thesis in two regards: the orbit fits to the Orphan Stream, as well as the Orphan

Stream stellar density in F-turnoff stars, shown in Figure 4.14. We will not fully

reiterate this work here, only those parts directly applicable to this Thesis will be

presented.

NWYX obtained Orphan Stream detections which are given in Tables 4.3 and

4.4. These detections were fit using the methods outlined by the previous chapter

in a variety of Galactic gravitational backgrounds. Two main questions needed to

be answered: can the Orphan Stream constrain the Galactic halo mass and does the

disk model affect the fits? To answer these we performed orbit fits in seven Galactic

models:

1. We fit the exact model of Xue et al. (2008), using an exponential disk and

NFW halo. The parameters for bulge, disk, and halo were taken from their

paper. the mass of the bulge, disk and halo, integrated out to 60 kpc, are

tabulated in Table 4.5. The mass of the Milky Way using this model is M(R <

60 kpc) = 4.0 × 1011M⊙, of which 3.3 × 1011M⊙ is in the halo. The value for

the scale radius, rs = 22.25 kpc, used for all the NFW potentials in this work

comes from the top panel of Figure 16 of Xue et al. (2008). For a Milky

Way virial radius of rvir = 240 kpc (Sales et al. 2007), this corresponds to a

concentration index of c ∼ 11.

2. We fit the same model as the previous case, but allow the vc,max normalization

of the NFW model (the halo mass) to vary in amplitude.

3. We fit the same bulge and exponential disk model as the previous two cases,
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Figure 4.13 Stars with 20.7 < gcorr < 21.7, the magnitude centered on the Orphan
Stream’s turnoff, are plotted in a Hess diagram over the SDSS footprint. The
stream can be seen extending to nearly l = 170◦. Additionally, BJ , R2 data from
SuperCOSMOS is extracted and added to the figure to cover the region of the
Orphan Stream where no SDSS data exists. The stars here have 20 < BJ < 21, 0.5 <
BJ − R2 < 1.0 (with the default calibration and reddening corrections adopted
throughout). A narrow trail is visible in the SuperCOSMOS extension, running
from (l, b) = (268◦, 38◦) to (255◦, 48◦). The lower panel adds the Bcorr = 0 trace of
the stream, which differs slightly from BOrphan = 0◦ for l < 200◦. The location of
the halo object Segue-1 is indicated. The inset shows a blowup of the region with
230◦ < l < 280◦, 30◦ < b < 70◦.
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Figure 4.14 Number counts of F turnoff stars within ±2◦ of the stream are plotted
as an open black histogram. The number of background turnoff stars off-the-stream
on either side (2◦ < |Bcorr| < 4◦) are plotted in red. The difference is plotted as a
hashed histogram. Note the significant excess of turnoff stars over background near
ΛOrphan = +23◦, corresponding to (l, b) = (255◦, 49◦). It is possible that the stream
progenitor lies in this region of sky. The bins at ΛOrphan = 21◦, 33◦, and 36◦ have
been corrected for incompleteness in both the data and background counts.

but use a logarithmic halo model. We allow the normalization (mass) of the

halo to vary as a free parameter to be fit.

4. We fit stream kinematics only, assuming a spherical logarithmic halo as given

by Law et al. (2005). Disk and bulge parameters for this case are identical to

the Law et al. (2005) paper. Their model, with a disk model from Miyamoto

and Nagai (1975), yields M(R < 60 kpc) = 4.7 × 1011M⊙.

5. We fit the same model as case 4, but allow the halo speed above to vary as

a free parameter within the spherical logarithmic halo potential model, while

keeping d = 12 kpc, where d is the halo core softening radius.
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6. We fit the kinematics within the spherical NFW halo given in Navarro et al.

(1996) and further described by Klypin et al. (1999), normalized to M(R <

60 kpc) = 3.3×1011M⊙. We fit the vc,max of the NFW model to give a similar

total potential to that for the logarithmic halo with vhalo = 114 km s−1 above.

These give rise to vc,max = 155 km s−1 and rs = 22.25 kpc.

7. We fit the same model as case 6, but allow the NFW maximum circular speed

vc,max to vary while keeping rs = 22.25 kpc.

l b δb ΛOrphan BOrphan BHB g0 δg0

255 48.5 0.7 22.34 0.08 17.1 0.1
245 52.0 0.7 15.08 0.56
235 53.5 0.7 8.86 0.21
225 54.0 0.7 2.95 -0.23 17.6 0.2
215 54.0 0.7 -2.93 -0.33 17.9 0.1
205 53.5 0.7 -8.85 -0.09 18.0 0.1
195 52.0 0.7 -15.08 0.05
185 50.5 0.7 -21.42 1.12 18.6 0.1
175 47.5 0.7 -28.59 1.88
171 45.8 1.0 -31.81 2.10

Table 4.3 Orphan Stream photometric detections

ΛOrphan l b δb BHB g0 δg0 vgsr δvgsr σv N d δd
-30 173 46.5 0.7 18.8 0.2 115.5 6.7 11.5 4 46.8 4.5
-20 187 50.0 1.0 18.5 0.1 119.7 6.9 11.9 4 40.7 1.9
-9 205 52.5 0.7 18.0 0.1 139.8 4.6 12.9 9 32.4 1.5
-1 218 53.5 1.0 17.8 0.1 131.5 3.1 8.2 8 29.5 1.4
8 234 53.5 0.7 17.4 0.1 111.3 11.1 11.1 2 24.5 1.2

18.4 249.5 50.0 0.7 17.1 0.1 101.4 2.9 9.8 12 21.4 1.0
36 271 38.0 3.5 16.8 0.1 38.4 1.7 2.5 3 18.6 0.9

Table 4.4 Orphan Stream spectroscopic detections

To obtain our initial guess for the kinematic parameters, we draw from Tables

4.3 and 4.4 a test particle at Point 1: (l, b, R) = (218◦, 53.5◦, 30 kpc) and construct

a vector to Point 2: (l, b, R) = (215◦, 54.0◦, 31 kpc). By matching the radial ve-

locity at Point 1, we obtain an initial parameter starting point of (R, vx, vy, vz) =

(30 kpc,−125 km s−1, 75 km s−1, 95 km s−1).
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With this initial kinematic guess we will consider seven specific cases, which

include three potential models published by previous authors, and four models in

which the halo mass is varied to best match our data (logarithmic and NFW halos

are compared, as well as a low mass exponential disk vs. a high mass M-N disk):

The models were fit to all of the available data in Tables 4.3 and 4.4, with

the exception of the last point in Table 4.4. Attempting to fit the data set with

the l = 271◦ point included resulted in substantially worse χ2 values (χ2 ∼ 4).

Additionally, fitting this point introduced deviations of the orbit from the observed

stream distances, with the high l distances being underestimated, and the low l

distances being overestimated. These systematic differences between the model and

data led us to perform all of our best fit models without the l = 271◦ point, for all

six of the orbit fits listed above.

In addition to these cases, we also attempted several more which did not

produce very interesting results, but which we will summarize here. We ran several

orbits fits in an attempt to measure the halo flattening parameter, q. The fits were

very insensitive to q; fitting this parameter in the logarithmic halo yielded results

with a very large error in q. Therefore, we fixed the flattening parameter at q = 1.

We also attempted to simultaneously fit vhalo and d, and vc,max and rs, for the

logarithmic and NFW halos, respectively. In general, fitting the scale lengths did

not substantially change the halo speed results, and the scale lengths were fit only

with very large errors, on the order of tens of kiloparsecs. Therefore, we did not

attempt to fit the scale lengths in either model.

4.3.1 Results

For each halo model, we ran five random starts of the gradient search fitting

algorithm in the same manner described in Chapter 2. Once the best fit orbit was

found for each model, we computed the Hessian errors by varying the parameter step

sizes until the errors converged for different step size choices. Using a starting point

of (l, b) = (218◦, 53.5◦), the best fit parameters and their errors are enumerated in

Table 4.5.

Figure 4.15 shows the three orbit fits for the models with the exponential disk.
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The position and velocities of the datapoints are well fit by all three exponential

disk models. The lower panel of Figure 4.15 shows that for this stream, the distance

fit is most sensitive to the potential. The weaker potential of the lower mass halo

model gives the best fit to observed stream distances from Tables 1 and 2 (black

points with error bars), as it allows the stream to escape to larger Galactocentric

radii without significantly changing the observed radial velocity gradient. There is

little difference between the best fit NFW halo and the best fit logarithmic halo.

Figure 4.16 shows the circular velocity curve for models N=1-3 from Table 4.5,

which use the same exponential disk parameters as Xue et al. (2008) in all cases.

The figure shows that the orbits that are well fit to the Orphan Stream don’t fit the

Xue et al. (2008) nor the Koposov et al. (2009) result; the rotation speed of the

model is too low at all Galactic radii.

We therefore try using a M-N disk with parameters as adopted by Law et al.

(2009). This disk is about twice massive than the exponential disk model. We note

here that we have not fully explored all possible disk shapes and masses, and a more

massive exponential disk may give similar results to the more massive M-N disk

considered here. Figure 4.17 shows the four fits for the models with the M-N disk.

As before, lower halo speeds are a better fit to the Orphan Stream than those used

by previous authors, and there is little difference between the fits for the best fit

NFW and logarithmic halos. Evidently, the Orphan Stream is telling us that the

mass of the Milky Way is smaller than previously thought, so that distant portions

of the stream, which are therefore experiencing lower gravitational attraction to the

Galaxy, are pushed further away from the Galaxy center at a given energy.

Figure 4.18 shows the same circular velocity as Figure 4.16 for models 4-7

with an M-N disk. This time we find that the low mass halo orbit fits are a good

fit to the Xue et al. (2008) and Koposov et al. (2009) result. They actually fit the

Xue et al. (2008) model better than the model fit in that paper. Using the higher

velocity leads to a systematic deviation in the distances, so that the model is further

away than all of the datapoints at high Galactic latitude, and closer for low Galactic

latitudes. Also, as we will see later, adding velocity segregation from an N-body

simulation only makes the systematic errors in the distance larger; for example stars
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Figure 4.15 Orbit fits (b, vgsr, and d vs. Galactic longitude) to the Orphan Stream
data for three different halo potentials (models 1-3), with a fixed bulge and expo-
nential disk model with parameters copied from Xue et al. (2008). In red (dot
dash, model 1) we show the best orbit using the NFW halo parameters from Xue
et al. (2008). In orange (dotted, model 2) we show the best fit if we allow the
vc parameter to vary in the NFW profile. In black (solid, model 3) we show the
best fit if we instead use a logarithmic potential. Note that the best fit NFW and
logarithmic potentials give similar fits, but both have a lower velocity (and therefore
halo mass) than found by Xue et al. (2008). To fit the Orphan Stream distance
data, it is necessary to reduce the amplitude of the halo potential by about 40%.
The distance-velocity space locations of Segue-1, Ursa Major II, Complex A are
indicated as labeled in the top panel. Note that only Segue-1 is possibly associated
with this tidal stream.
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Figure 4.16 We now compare the best fit models from Figure 4.15 with the Milky
Way rotation curve data from Xue et al. (2008) and Koposov et al. (2009). The red
curve (dot dash, model 1) is the best fit found by Xue et al. (2008), from Figure 16a
of that paper, so it is a good fit to the data points. The orange curve (dotted, model
2) and black curve (solid, model 3), for which we allowed the halo mass to vary, are
significantly below all of the rotation curve data points. The rotation curves from
individual components of the potential (exponential disk, bulge, and NFW halo)
used in Xue et al. (2008) are also shown. We also show a Miyamoto-Nagai disk,
scaled to a total mass similar to that of the exponential disk, to show that the
rotation curve in the region we probe is not dramatically different for different disk
profiles, and the halo rotation curves for the lower mass halos.

in the leading tidal tail have lower total energy than the progenitor and have smaller

Galactocentric distances. The energy difference increases as a function of distance

from the progenitor, along the stream. However, we note that our formal error bar

on vhalo = 73 ± 24 km s−1 is quite large and marginally consistent (within 2 sigma)

with the higher vhalo = 114 km s−1 value of Law et al. (2005) and others. Although

the formal error bars are large, the orbit fits suggest that a lower halo speed is

preferred.
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Figure 4.17 Orbit fits (b, vgsr, and d vs. Galactic longitude) to the Orphan Stream
data for potential models 4-7, with a fixed bulge and Miyamoto and Nagai (1975)
disk with parameters copied from Law et al. (2005). In green (dash, model 4) we
show the fit best orbit using the logarithmic halo parameters from Law et al. (2005).
In red (dot dash, model 6) we show the best fit with NFW halo parameters fixed
from Xue et al. (2008). Neither of these fixed halo potentials from previous papers
gives a good fit to the relative distances along the Orphan Stream; the slope of the
d vs. l plot is too shallow for these models. The black (solid, model 5) and orange
curves (dotted, model 7) show the best fit orbits if the disk is fixed and the halo
masses are allowed to vary for the logarithmic and NFW profile halos, respectively.
As in Figure 4.15, we see very little difference between the best logarithmic and
NFW profile fits, and the preferred values of the halo mass is lower than that of
previous authors. Again, it is necessary to reduce the amplitude of the halo potential
by about 40% to fit the Orphan Stream distances. The locations of Segue-1, Ursa
Major II, Complex A are as labeled as in Figure 4.15.
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Figure 4.18 We now compare the best fit models from Figure 4.17 with the Milky
Way rotation curve data from Xue et al. (2008) and Koposov et al. (2009). All of
the models use a fixed M-N disk and bulge, with a mass about twice as large as the
exponential disk in the models in Figures 4.15 and 4.16. The green (dash, model
4) and red (dot dash, model 6) curves use fixed parameters from the logarithmic
halo potential of Law et al. (2005) and NFW halo potential of Xue et al. (2008),
respectively. Neither of these fit the Orphan Stream distances, and they are not
especially good fits to the rotation curve, predicting rotation velocities above most
of the data points. The black (solid, model 5) and orange curves (dotted, model
7) are reasonably good fits to the Xue et al. (2008) data, even though they were
not fit to this data. In these models, the halo mass was allowed to vary. Our best
fit model is model 5 (black, solid curve), though model 7 is nearly as good. The
rotation curves from individual components of the potential (M-N disk, bulge, and
NFW or logarithmic halo) are also shown.
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Of the models that we tried, the three low-mass exponential disk models (1-3)

fit either the Orphan Stream data or the Xue et al. (2008) rotation curve, but not

both. The two low halo mass models (models 5,7) with a higher mass M-N disk fit

the best, with a logarithmic halo fitting about the same as an NFW profile. The two

higher halo mass models (models 4,6) are poorer fits to both the Orphan Stream

and the Xue et al. (2008) rotation curves.

Although we cannot formally rule out the halo models fit by Xue et al. (2008)

and Law et al. (2005), in order to simultaneously fit the Xue et al. (2008) circular

velocity data, we prefer a lower total mass of the Milky Way than measured in either

of those two papers. Our total Milky Way mass is 60% of that found by Xue et al.

(2008) and Law et al. (2005). As mentioned earlier, our masses are at the low end,

but not out of range of recently published masses. To estimate the virial mass of

the Milky Way given our best fit model 5, we multiply the halo mass within 60 kpc

by 4 (for a virial radius of 240 kpc), and add the disk plus bulge mass. The result

is M(R < 240 kpc) = 6.9× 1011M⊙. Of interest is the recent result of Odenkirchen

et al. (2009), who suggested that a lower halo mass might make it easier to fit

the kinematics of the Pal 5 globular cluster stream. The findings on Milky Way

circular velocity with radius to distance of R ∼ 60 kpc by Xue et al. (2008) also

are consistent with our low value for the halo speed. When the M-N disk model is

used, they are also in rough agreement with Koposov et al. (2009) who measure

vc(R = 8kpc) = 224 ± 13 km s−1.

We note that we didn’t explore scaling the mass of the disk (or bulge) beyond

their default values of Mdisk = 1011M⊙ for the M-N disk or Mdisk = 5 × 1010 for

the exponential disk. Thus, while we find that the heavier M-N disk (combined

with a lower amplitude halo) fits the joint data sets of the Orphan Stream, and

the Xue et al. (2008) BHBs circular velocity points, better than models with the

lighter exponential disk, it is likely that similar fits could be obtained with a heavier

exponential disk (though still with a lighter halo). If more data were available, the

disk mass could be varied to find the best combination of disk and halo mass.

It is important to note from Figures 4.15 and 4.17 that if we could follow the

Orphan Stream just a little farther out into the halo, we would have a much better
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power to determine the halo mass, since the distances to the stream for each case

diverge.

Figure 4.19 The black line shows our preferred fit orbit in the logarithmic halo with
vhalo = 73 km s−1 in right-handed Galactic rectangular coordinates (X, Y, Z). The
Sun is at (−8, 0, 0) kpc and the Galactic center at the origin. The (l, b) coordinates
and BHB magnitudes are converted to (X, Y, Z) assuming a BHB absolute magni-
tude of Mg = 0.45. The arrows indicate the forward direction of the orbit and the
Sun’s motion. Observations of the Orphan Stream data are shown as asterisks. The
positions of Segue-1, UMa II and Complex A are shown with the same symbols as
in Figure 4.17.

Figure 4.19 shows the best fit vhalo = 73 km s−1 logarithmic halo model in

(X,Y,Z) Galactic coordinates with the direction of motion indicated by the arrows.

From the apo- and peri-galactic distances of ∼ 90 kpc and ∼ 16.4 kpc, respectively,
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we calculate an orbital eccentricity of e = 0.7. The inclination of the Orphan Stream

is i ∼ 34◦ with respect to the Galactic plane as seen from the Galactic center. It

will be important to obtain data for the Orphan stream at apogalacticon in order

to distinguish between different models for the Galactic potential.

4.3.2 The Orphan Stream is moving in a prograde direction

The velocities of the fit orbit definitively show that the stream stars are moving

in a direction from higher l to lower l. As a simple check, if we reverse the sign of

all the velocities (vx, vy, vz) in the model orbit, the path on the sky that the stream

traces out is the same, but the radial velocities do not match the observations by a

wide amount (|δ(v)| > 100 km s−1). Thus the Orphan Stream is on a prograde orbit

around the Milky Way. One may now ask if the visible piece of the Orphan tidal

stream is a leading or trailing tidal tail. If we assume that the ‘progenitor’ of the

Orphan Stream lies in the range 248◦ < l < 268◦ as the density plot of Figure 4.14

suggests , (with the density enhancement visible at (l, b) = [253◦, 49◦]), then the

portion of the tidal stream stretching from l = 250◦ to l = 170◦, combined with the

space velocity of stars moving in that same direction, implies that we are seeing a

leading tidal arm, rather than a trailing tidal arm. The piece of stream intercepted

at l = 270◦ is then a trailing tidal arm.

4.3.3 N-Body Realization

We now comment on the fact that our ‘simple orbit integration and fitting’

technique is not an N-body simulation, and therefore effects of stars leaving the

progenitor and drifting ahead or behind to greater and lower energies, which changes

their distance from the central body, are not captured as they would be in a full

N-body.

To conduct the N-body simulation, we first integrate the log halo (best fit

model 5) orbit back 4 Gyr and place a 10,000 particle Plummer sphere at the

predicted location. We use a Plummer sphere scale radius of rs = 0.2 kpc and total

mass of Mtotal ∼ 2.5 × 106M⊙. Using the orbit kinematics from 4 Gyr in the past,

we evolve it forward for 3.945 Gyr so that the dwarf progenitor ends up at l ∼ 250◦.
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We conducted the N-body simulation using the gyrfalcON tool of the NEMO Stellar

Dynamics Toolbox (Teuben, 1995).

The result of this simulation is given in Figure 4.20. The top three panels

show the logarithmic halo orbit with vhalo = 73 km s−1 and N-body results for

(l, b), (l, vgsr), and (l, d⊙).

We see that the N-body stream is a good fit to the sky locations and velocities

of the simple orbit (black curve in Figure 4.20). In the distance comparison (third

panel), the N-body is significantly below the orbit at low l. This is in agreement

with our intuition for a stream that is moving from high l to lower l, since energy

differentials due to the internal dispersion of stars in the progenitor draw stars

with lower energy (and lower Galactocentric distance) further ahead closer to the

Galactic center than those with higher total energy. Note that this is independent

of the question of whether the tail is leading or trailing. We know the direction that

the stream is going from the observed radial velocities and distances. We expect

that we are seeing a leading tidal tail because we think the dwarf remnant is located

at the high Galactic longitude end of the observed portion of the stream. But even

if we are incorrect about the position of the dwarf, the observed slopes in the lower

panels of figures 12 and 14 indicate a lower mass Milky Way, and a full N-body

simulation will only make the slope for higher mass estimates fit worse.

The lowest panel in Figure 4.20 shows the density of N-body simulated particles

remaining at the current epoch along the stream vs. l. This density distribution

may be compared with that of the data in Figure 4.14. The N-body simulation has

a lower density of particles near l = 240◦, (ΛOrphan = 15◦). These two effects are

apparent in the Orphan imaging data in Figures 4.14 and 4.13, respectively. This

suggests that our method of fitting a simple orbit to the tidal debris is a reasonable

first approximation, and fitting the density is a useful diagnostic tool.

4.3.4 Conclusions

We summarize our findings as follows:

The Orphan Stream data is best fit to a Milky Way potential with a halo plus

disk plus bulge mass of about 2.6× 1011M⊙, integrated to 60 kpc from the Galactic
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Figure 4.20 The b, vgsr and dSun vs. l (top 3 panels) orbit of the preferred halo
(logarithmic potential with vhalo = 73 km s−1, M-N disk and heavy bulge), simply
integrated, is shown as a heavy black curve. A 10,000 point N-body simulation of
a Plummer sphere dwarf with Mtotal ∼ 106M⊙ is integrated in this potential from
a time 4 Gyr ago forward for 3.945 Gyr placing the proposed progenitor at (l, b) ∼
(250◦, 50◦). The lower panel shows the density distribution of the final (current)
epoch positions of the N-body points as a histogram in l. Note the similarity of the
the simulated distribution, including the dip in density at l = 240◦(ΛOrphan = +15◦)
seen in Figure 4.14, and the spread (first panel) and density falloff at l < 180◦ seen
in Figure 4.13.
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center. Our best fit is found with a logarithmic halo speed of vhalo = 73±24 km s−1,

a disk+bulge mass of M(R < 60 kpc) = 1.3 × 1011M⊙, and a halo mass of M(R <

60 kpc) = 1.4 × 1011M⊙. However, we can find similar fits to the data that use an

NFW halo profile. Our halo speed of vhalo = 73± 24 km s−1 is smaller than that of

previous literature. Although our fits with smaller disk masses and correspondingly

larger halo masses are not good fits the the Xue et al. (2008) rotation curves, we

have not tried enough models to rule out this possibility. Distinguishing between

different classes of models requires data over a larger range of distances.

The Orphan Stream is projected to extend to 90 kpc from the Galactic center,

and measurements of these distant parts of the stream would be a powerful probe

of the mass of the Milky Way.

An N-body simulation yields an excellent fit to the observed data, including

matching the approximate shape of the stellar stream star density along the stream.

The N-body mass used was about Mtotal,Orphan = 106M⊙, about 10−3 the total mass

of the Sgr stream and dSph system. The total Orphan system mass is not highly

constrained.

The list of possible halo objects associated with the Orphan Stream is reduced

to one: The ‘dissolved star cluster’ Segue-1. Other possible associated objects,

namely UMa II, the Complex A HI cloud, and the halo’s globular clusters are not

close to the Orphan Stream orbit presented here in distance or velocity (or both).

Because the orbit fit is not able to significantly constrain the flattening q of

the halo potential, we assume a q = 1.0 throughout. Nevertheless, the analysis

of the Orphan Stream shows us that we are able to constrain another important

halo potential parameter, namely the amplitude of the halo potential. A spherical

logarithmic potential with 60% of the mass of the fit of Xue et al. (2008) provides

a reasonable fit to the Orphan Stream data.
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N MBulge Disk Mdisk Halo Mhalo d/rs Rfit vx vy vz vhalo χ2 M60

1010 MSun 1010 MSun 1010 MSun kpc kpc km s−1 km s−1 km s−1 km s−1 1010 MSun

1 1.5 Exp 5 NFW 33 22.25 28.8 −170 ± 11 94 ± 2 108 ± 10 155 1.55 40
2 1.5 Exp 5 NFW 20 22.25 28.5 −157 ± 10 78 ± 12 107 ± 9 120 ± 7 1.37 24
3 1.5 Exp 5 Log 17.6 12 28.4 −152 ± 12 72 ± 12 106 ± 9 81 ± 12 1.35 26.5
4 3.4 M-N 10 Log 35 12 28.9 −179 ± 11 106 ± 2 109 ± 10 114 1.98 47
5 3.4 M-N 10 Log 14 12 28.6 −156 ± 10 79 ± 1 107 ± 9 73 ± 24 1.70 26.4
6 3.4 M-N 10 NFW 33 22.25 28.9 −178 ± 5 106 ± 3 108 ± 10 155 1.96 43.5
7 3.4 M-N 10 NFW 16 22.25 28.7 −161 ± 11 85 ± 1 107 ± 9 109 ± 31 1.73 28.4

Table 4.5 Orphan Stream models. M60 is the total Galaxy mass enclosed within 60 kpc of the Galactic center.
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4.4 The Sagittarius Dwarf Tidal Stream (Sgr)

The Sagittarius Dwarf Galaxy was discovered by Ibata et al. (1994) while

examining horizontal branch and carbon stars near the Galactic center using the 3.9

meter Anglo-Australian Telescope (AAT). The dwarf is on the opposite side of the

Milky Way from the Sun and slightly below the Galactic plane at coordinates (l, b) =

(5.6◦,−14.2◦). In the original discovery paper, Ibata observed that the dwarf is

elongated in the direction of the Galactic center, suggesting tidal disruption. Yanny

& Newberg et al. (2000) discovered structure in A-colored stars in the Galactic halo

using SDSS commissioning data. Simultaneously, Ibata et al. (2001) announced the

discovery of carbon star structure in the same place found by Yanny & Newberg et

al. (2000). This structure is tidal debris from the disrupted dwarf, and has been

subsequently observed by Yanny & Newberg et al. (2000), Newberg et al. (2003),

Newberg et al. (2007), Bellazzini et al. (2003), Majewski, et al. (2003), Majewski,

et al. (2004), Mart́ınez-Delgado et al. (2004), Fellhauer et al. (2006), Chou et al.

(2007) and modeled by Johnston et al. (1995), Ibata et al. (1997), Gómez-Flechoso

et al. (1999), Helmi & White (2001), Law et al. (2004), Law et al. (2005), Cole, et

al. (2008), Law & Majewski (2010) and Cole (2009).

Plentiful observations of Sgr give us a good starting point for a simultaneous

orbit fit. In this work, we will utilize Sgr stream centers and distances found by

Cole (2009), and radial velocities given in Law, et al. (2005). So in a manner

similar to the Orphan Stream, we have two sets of data: one that is “photometric”

and provides sky coordinates and distance, and the other which provides Galactic

standard of rest radial velocities. The stream centers and distances are given in

Table 4.6 and the velocities are given in Table 4.7.

Spanning the entire sky, the Sagittarius stream has provided an excellent test

bed for modeling the structure of the Galaxy. Since its discovery, models have had a

mixed success rate. Prior to the discovery of the tidal stream, Johnston et al. (1995)

were not able to place tight constraints on the orbit of the dwarf despite extensive

numerical simulation. Once the stream was discovered, Majewski et al. (2004, 2005)

mapped it extensively in giant stars from 2MASS, formulated an orbital plane, and

placed constraints on the radial velocities of the leading and trailing tails.
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ΛSgr,GC BSgr,GC δBSgr,GC d δd
201.16 11.25 5 16.767 0.54 L
205.00 11.01 5 18.138 0.357 L
211.02 9.89 5 21.218 0.509 L
217.63 8.73 5 22.784 0.463 L
221.69 9.03 5 23.491 0.302 L
227.78 8.54 5 25.298 0.408 L
233.18 8.51 5 25.696 0.394 L
248.28 3.97 5 28.296 0.416 L
255.77 3.06 5 31.162 0.522 L
269.08 1.89 5 36.908 0.334 L
279.42 1.76 5 40.365 6.474 L
293.38 -1.33 5 43.449 0.482 L
87.37 -0.01 5 26.077 0.178 T

105.11 -1.14 5 29.218 0.197 T
114.42 -2.95 5 30.225 0.250 T

Table 4.6 Sagittarius Stream photometric detections from Cole (2009). Leading and
Trailing tails are denoted L and T respectively.

ΛSgr,GC vgsr δvgsr

0.125 171 5 L
293.4 38 10 L
287.2 16.4 10 L
283.6 -18 10 L
275.9 -39.6 10 L
268.2 -58 10 L
264.1 -69.2 10 L
254.3 -84.4 10 L
248.7 -97.2 10 L
229.1 -109.2 10 L
131.9 -170 10 T
114.9 -135.6 10 T
99.0 -106 10 T
87.7 -85.2 10 T
75.9 -47.6 10 T

Table 4.7 Sagittarius Stream spectroscopic detections from Law et al. (2005) and
Law & Majewski (2010). Leading and Trailing tails are denoted L and T respectively.
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Attempts to model the dynamics of the tails via orbits met with contradictory

results. Law et al. (2005) found that the trailing tail radial velocities are insensitive

to the halo flattening q. The leading tail velocities, however, are best fit by a prolate

halo with q = 1.25. This would have settled the matter, except that a prolate halo

leads to the Sagittarius leading tidal tail precessing in the wrong direction, and thus

not agreeing with stream detections on the sky.

This discrepancy remained until Law & Majewski (2010) formulated a con-

sistent model of the Sagittarius leading and trailing tails in a triaxial halo. The

halo, given analytically in Chapter 2, is logarithmic and contains three flattenings

(q1, q2, qz) and an angle φ that rotates the halo in the X-Y plane. The second

flattening q2 is set to unity, as it is the ratios of the flattenings that is physi-

cally significant. The best fit structure parameters found by Law & Majewski are

(q1, qz, φ) = (1.38, 1.36, 97◦). They did not fit either the halo speed or scale length,

holding these at vhalo = 115 km s−1 and d = 12 kpc.

The best-fit triaxial structure parameters are troubling from the standpoint

of Galactic formation. They represent a triaxial halo whose minor axis is in the

Galactic plane. Stable orbits cannot form around the intermediate axis of a triaxial

halo, and thus a disk cannot form. Law & Majewski acknowledge this fact, and

suggest a possible interaction with another large scale piece of Galactic structure

(such as the Magellanic clouds) as a remedy.

4.5 Galactic Rotation Curve

In the previous chapter, we created test rotation curves by perturbing the

true rotation curve of a Galactic potential by normally distributed 20 km s−1 errors.

Figures 4.16 and 4.18 show the rotation curve data obtained by Xue et al. (2008).

The Xue rotation curve data was not actually fit in the Orphan models. In the next

section we present a simultaneous fit of three streams and the rotation curve. We

will utilize rotation curve data from Simulation 1 of Xue et al. (2008, Table 3),

which is reproduced in Table 4.8.
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r (kpc) Vcir km s−1

7.5 202 ± 20
12.5 227 ± 20
17.5 206 ± 20
22.5 170 ± 20
27.5 168 ± 24
32.5 162 ± 27
37.5 175 ± 24
42.5 207 ± 30
47.5 148 ± 31
55.0 180 ± 54

Table 4.8 Galactic rotation curve from Xue et al. (2008)

4.6 Simultanous Triaxial Orbit Fit

With the streams discussed in the previous sections, and the machinery of

Chapters 2 and 3, we now move to fitting the GD-1, Orphan, and Sgr stellar streams

in a Galactic halo. Law et al. (2005) determined that Sgr cannot be adequately

fit in an axisymmetric halo, we therefore use a more general triaxial form of the

potential. We also make no attempt to fit the bifurcation of the leading tail because

it is likely that this component of the structure arises from the internal structure

of the dwarf galaxy, in particular its rotational properties (Peñarrubia et al. 2010

& Lokas et al. 2010). In Chapter 3 we showed that mock streams are unable to

constrain parameters of a triaxial+spherical halo, we therefore do not attempt this

either.

We construct a global fitness function containing the GD-1, Orphan, and Sagit-

tarius streams, as well as the Galactic rotation curve (Equation 2.10). GD-1 and Or-

phan are fit in (θ, φ) = (l, b) coordinates, and Sagittarus is fit in (θ, φ) = (ΛSgr, BSgr).

A particle swarm optimization was performed, and the search space included all

physically valid parameter values. The number of particles in the optimization was

varied from 200 to 1000. Particle swarm parameters wi, c1 and c2 were held constant

at wi = 0.9, c1 = c2 = 0.3. The particle swarm results were searched for the best fit

parameters, and allowed to run until the best fit solution remained unchanged for

one day. The best fit parameters are given in Table 4.9. The fitness of this solution

is χ2 = 6.28, and scale factors of SLeading = 1.47 and STrailing = 0.62 were fit. The
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best fit and true orbits for GD-1 and Orphan are shown, along with the stream

detections, in Figure 4.21. The simulated Sgr fit orbit with detections is shown in

Figure 4.22. The rotation curve for this halo is shown in Figure 4.25.
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Figure 4.21 Best fit orbits to GD-1 and Orphan streams in triaxial halo. We see
good agreement in stream quantities. The best fit of the Orphan Stream distances
is not as good as the axisymmetric vhalo = 73 km s−1 halo in the previous section.

The parameters for the triaxial halo are perfectly consistent with Law & Ma-

jewski (2010). This is both encouraging and troubling. It is encouraging in the

respect that the GD-1 and Orphan streams are consistent with a halo of this shape

and orientation. It is troubling because, as Law & Majewski remarked, the halo ori-

entation angle φ places the intermediate axis of the halo in the plane of the Galaxy,

which makes it difficult to understand how a stable Galactic disk formed.

Shown in Figure 4.24 are debris detections at 90 kpc from the Galactic center

from Newberg et al. (2004). The simulated distances of the best fit Sgr trailing tail

are not consistent with these detections. This result has two interpretations: either

the debris associated with those detections actually does not belong to Sgr, or the

triaxial halo model does not adequately represent the Milky Way halo. To test the
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Figure 4.22 Best fit orbit to Sagittarius debris data in a triaxial halo. Overlayed is a
10,000 particle N-body simulation evolved for 4 Gyr along the best fit orbit. We see
good agreement in velocities and distances. Fitting the distance scale factors pro-
vides a good first-order approximation to modeling the distances to the Sagittarius
stream. Shown in black are the distances to tidal debris 90 kpc from the Galactic
center, postulated by Newberg et al. (2004) to be Sagittarius debris.

first interpretation, we will ask the question: what would the halo speed need to be

to have the simulated stream points intersect the detections, and preserve the total

velocity of the particles? We must satisfy the energy relation:

Etotal(RGC = 65 kpc) = Etotal(RGC = 90 kpc), (4.1)

or more specifically

1

2
mv2 −mΦD(RGC = 65) −mΦB(RGC = 65) +mΦH(RGC = 65)

=
1

2
mv2 −mΦD(RGC = 90) −mΦB(RGC = 90) +mΦH(RGC = 90) (4.2)
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Parameter Value
R1 7.5 ± 1.2 kpc
v1,x −86 ± 6 km s−1

v1,y −234 ± 16 km s−1

v1,z −118 ± 8 km s−1

R2 29.2 ± 4.4 kpc
v2,x −183 ± 26 km s−1

v2,y 101 ± 29 km s−1

v2,z 106 ± 18 km s−1

R3 26.9 ± 0.4 kpc
v3,x 244 ± 4 km s−1

v3,y −34 ± 4 km s−1

v3,z 163 ± 3 km s−1

vhalo,t 120 ± 3 km s−1

q1 1.44 ± 0.07
qz 1.41 ± 0.05
φ 94 ± 1◦

dhalo,t 18.2 ± 1.3 kpc
χ2 6.28

Table 4.9 Best particle swarm fit of kinematic and potential parameters of the GD-1,
Orphan, and Sgr streams in the restricted triaxial case.

The detections at 90 kpc lie near the Galactic anticenter. We will therefore

assume YGC = ZGC = 0. Utilizing the Miyamoto-Nagai disk, bulge, and triaxial

halo potentials from Chapter 2, we obtain:

−MD

65
− MB

65 + 0.7
+v2

halo,t ln(c1652+d2
halo,t) = −MD

90
− MB

90 + 0.7
+v2

halo,t,90 ln(c1902+d2
halo,t)

Assuming constant halo scale length dhalo,t = 18.2 kpc, and solving for the

halo speed vhalo,t,90, we obtain vhalo,t,90 = 115 km s−1, which is not consistent with

the fit halo speed to within one sigma confidence. We therefore conclude that the

debris detections at 90 kiloparsecs from Newberg et al. (2006) are inconsistent with

being members of the Sagittarius stream if the logarithmic halo model is a good

description of the Milky Way.

This conclusion is limited to the scope of the logarithmic halo model. Every

distance detection used to create this fit is within 50 kpc of the Sun, and they

are all consistently fit with the logarithmic halo. The Milky Way halo may have



116

a radial dependence that changes between 50 kpc and 90 kpc that can actually fit

the debris at 90 kpc. We therefore stop short of concluding that the 90 kiloparsec

detections are definitively excluded from Sgr stream membership; they are simply

inconsistent with the logarithmic model. A topic of future work is investigating the

radial dependence of the halo, and also improving upon the distance scale factor

concept to allow distances at apogalacticon to be fit.

For thoroughness, we will conduct one more simultaneous fit, within a general-

ized triaxial halo with all Euler angles as parameters. A particle swarm optimization,

conducted in a similar manner, gives the best fit parameters shown in Table 4.10.

The fitness of this solution is χ2 = 6.03, and scale factors of SLeading = 1.33 and

STrailing = 0.58 were fit. The best fit and true orbits for GD-1 and Orphan are

shown, along with the stream detections, in Figure 4.23. The simulated Sgr fit orbit

with detections is shown in Figure 4.24. The rotation curve for this halo is shown

in Figure 4.25.
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Figure 4.23 Best fit orbits to GD-1 and Orphan streams in full triaxial halo. We see
good agreement in stream quantities. The best fit of the Orphan Stream distances
is not as good as the axisymmetric vhalo = 73 km s−1 halo in the previous section.
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Figure 4.24 Best fit orbit to Sagittarius debris data in full triaxial halo. Overlayed
is a 10,000 particle N-body simulation evolved for 4 Gyr along the best fit orbit.
We see better agreement in sky positions than the restricted triaxial model, and
good agreement in velocities and distances. The Sagittarius dwarf is offset from its
true position by 10◦ to show orbit consistency with dwarf radial velocity. Fitting
the distance scale factors provides a good first-order approximation to modeling
the distances to the Sagittarius stream. Shown in black are the distances to tidal
debris 90 kpc from the Galactic center, postulated by Newberg et al. (2004) to be
Sagittarius debris.

The conclusions for this fit are as follows:

• The angle φ is consistent with the results from Law & Majewski (2010). The

angle θ is not consistent with zero while the angle ψ is consistent with zero.

This result is more at odds with models of Galaxy formation than the Law &

Majewski model, because now the Galactic disk is not aligned with any axis.

• The angle φ is consistent with the stellar halo orientation found by Newberg

& Yanny (2006). Our θ is their φ, our φ is their θ and our ψ is their ξ. In our

naming convention, they find φ ≈ 70◦, θ ≈ −5◦ and ψ ≈ 13◦. Our values for θ

and ψ disagree, but there is broad agreement for the value of φ between this
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Figure 4.25 Rotation curve fits for restricted and unrestricted triaxial halos. The
noise at high r values is due both to the triaxiality of the halo as well as the numerical
approximations used to calculate particle accelerations.

work, Newberg & Yanny, and Law & Majewski. This is compelling, because

Newberg & Yanny fit the triaxial orientation of stars in the Galaxy, without

referring to any specific form of the potential. It is not necessary for the stars

to have the same orientation as the dark matter. Our result of a consistent φ

value is important because it suggests a possible link between the dark matter

halo and the stellar population of the Galaxy in this dimension.

• As before, the simulated trailing stream distances do not coincide with the

Sgr detections from Newberg et al. (2004). This does not necessarily rule out

stream membership of those detections, but rather simply states that they are

not consistent with a model evolved in a logarithmic halo.

• This simultaneous fit has sacrificed the Orphan Stream distances to obtain

better fits elsewhere. The low mass, axisymmetric halo with vhalo = 73 km s−1

remains the best fit to the Orphan distances.
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Parameter Value
R1 7.6 ± 1.2 kpc
v1,x −85 ± 7 km s−1

v1,y −232 ± 18 km s−1

v1,z −117 ± 9 km s−1

R2 26.5 ± 4.6 kpc
v2,x −180 ± 28 km s−1

v2,y 96 ± 32 km s−1

v2,z 108 ± 17 km s−1

R3 23.7 ± 1.1 kpc
v3,x 243 ± 19 km s−1

v3,y −32 ± 28 km s−1

v3,z 174 ± 9 km s−1

vhalo,t 126 ± 9 km s−1

q1 1.33 ± 0.16
qz 1.52 ± 0.14
θ −50◦ ± 18◦

φ 86◦ ± 11◦

ψ 1◦ ± 6◦

dhalo,t 22.2 ± 3.3 kpc
χ2 6.03

Table 4.10 Best particle swarm fit of kinematic and potential parameters of the
GD-1, Orphan, and Sgr streams in the unrestricted triaxial halo.

• In the same manner as Law & Majewski, these results do not reproduce the

bifurcation in the Sagittarius leading tidal tail. Recent studies (Peñarrubia et

al., Lokas, et al.) indicate the bifurcation may be a result of internal Sagittarius

dynamics.

4.7 Discussion

This chapter has accomplished two primary goals. The first is a thorough

analysis of three Galactic tidal streams: the GD-1 Stream, the Cetus Polar Stream,

and the Orphan Stream. These streams, individually, provide powerful constraints

of the kinematics of the compact progenitors, and the Orphan Stream helps to

constrain the total halo mass. Second, GD-1 and Orphan have been combined with

the Sagittarius Stream to provide constraints on a fully triaxial dark matter halo.

In the restricted case, results consistent with previous authors have been recovered.
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In the unrestricted case, new halo orientation angles have been found.

These constraints are not without trade-offs though: the kinematic constraints

have been sacrificed. While the fully triaxial halo is capable of satisfying all Sagittar-

ius constraints, the low mass, axisymmetric halo remains the best fit to the Orphan

Stream distances. Additionally, the new halo orientation angles remain at odds with

our understanding of Galaxy formation. Specifically, a Galactic disk cannot form in

a halo whose minor axis lies in the plane of the disk. One possible explanation for

this discrepancy is that the Sagittarius Dwarf may have interacted with a similarly-

sized body in the past, which perturbed its path enough to affect the structure of

its tidal tails. Chapter 5 will further discuss future work in this field.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This work has accomplished two primary goals. The first is the development of a

general orbit fitting method that has been tested for robustness using simulated tidal

streams. The second is the elaboration of four Galactic tidal streams: the Stream of

Grillmair & Dionatos (GD-1), the Cetus Polar Stream, the Orphan Stream, and the

Sagittarius Dwarf Tidal Stream. While none of these streams is understood to the

fullest possible extent, an orbit model has been developed that incorporates them all,

in the latest triaxial Galactic halo potential, with the newest measurements of the

Galactic rotation curve. The results presented herein are consistent with previous

findings, and present challenges to the most current models of galactic formation.

Orbit fits were conducted for cases including single, double, and triple tidal

streams within a variety of Galactic potentials. The orbit fitting method of Chapter

2 was shown to be robust in cases where rotation curves were used, and velocities

of tidal stream stars cooresponded to orbit values. Out on the far ends of streams,

where the stream stars can deviate from the orbit, large velocity errors are required

to recover kinematic and potential parameters. Using simulations designed to mimic

real streams in the Milky Way halo, it was found that:

• Stream kinematics for simulated streams can be constrained, with or without

rotation curve fitting.

• Adding measurements of halo rotation curves when fitting tidal debris streams

aids in finding the best fit halo parameters.

• The total mass of a spherical halo is well constrained, even when the halo has

a different model than that used to create the stream.

• Fits of the flattening q suffer systematic biases. We have shown these biases to

be caused by the dispersion in stream quantities, and if the stream mirrored

its orbit perfectly, the halo parameters would be recovered.
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• At the ends of streams, our clipped mean technique determines stream veloc-

ities and errors that are inconsistent with the orbit used to create the stream.

This causes the optimization algorithm to converge to poor minima. Ex-

panding radial velocity and angle errors to experimentally appropriate levels

alleviates this difficulty, and leads to good fits.

• Gradient search is an effective method for finding best fit kinematics of a

single stream in a known potential, but quickly collapses when more streams

and parameters are introduced. We show that particle swarm optimization is

a better choice for multiple streams.

• Two streams chosen to mimic the GD-1 and Orphan Streams in a triaxial halo

are able to constrain the structure parameters (mass and flattenings), but are

unable to recover the scale length. The constraints on the scale length are

obtained by introducing a Sgr emulator stream.

• We are unable to recover parameters from a triaxial+spherical halo with three

streams chosen to emulate GD-1, Orphan, and Sagittarius.

• Given a true halo that is triaxial+spherical, stream parameters are not recov-

ered when fit with a triaxial model. This provides two a crucial insights: we

are able to determine that a triaxial halo is not a good fit to streams gener-

ated in a triaxial+spherical halo, and conversely, if true streams are not fit

well in a triaxial halo, an additional halo component may be responsible for

the discrepancy.

With the robustness of the orbit fitting method established, we moved on to fit-

ting the GD-1, Cetus Polar, and Orphan Streams individually within the logarithmic

dark matter halo model. The GD-1 stream was shown to be on a highly retrograde

orbit with an eccentricity e = 0.33 ± 0.02 (one sigma error) and an inclination to

the Galactic plane of i ∼ 35 ± 5◦. Best fit kinematics at (l, b) = (172.3◦, 57.2◦) are

(R, vx, vy, vz) = (8.4± 0.8 kpc,−89± 2 km s−1,−236± 6 km s−1,−115± 3 km s−1).

No constraints were placed on the parameters of the logarithmic halo using the GD-1

Stream.



123

The Cetus Polar Stream was discussed and fit, but the sparse detections also

precluded any logarithmic halo parameter constraints. The best fit kinematics for

CPS at (l, b) = (144◦,−71◦) are (R, vx, vyvz) = (31.1 kpc,−103 km s−1, 80 km s−1,

76 km s−1).

Fits to the Orphan Stream resulted in an orbit with an eccentricity e = 0.7

and inclination i ∼ 34◦. The Orphan Stream distances were found to be best fit

by a low mass, axisymmetric logarithmic halo with vhalo = 73 km s−1 and kine-

matics at (l, b) = (218◦, 53.5◦, 30 kpc) of (R, vx, vy, vz) = (−156 ± 10 km s−1, 79 ±
1 km s−1, 107 ± 9 km s−1). Of the models that we tried, the three low-mass expo-

nential disk models (1-3) fit either the Orphan Stream data or the Xue et al. (2008)

rotation curve, but not both. The two low halo mass models (models 5,7) with a

higher mass M-N disk fit the best, with a logarithmic halo fitting about the same as

an NFW profile. The two higher halo mass models (models 4,6) are poorer fits to

both the Orphan Stream and the Xue et al. (2008) rotation curves. The distance

to the far ends of the Orphan Stream is a powerful probe into the total halo mass.

Additionally, it was found that a dwarf galaxy with mass M ∼ 2 × 106 MSun and

scale radius rs = 0.2 kpc, evolved on the best fit orbit for 3.945 Gyr was able to

broadly recover the density profile of F-turnoff stars in the Orphan Stream.

Combining the GD-1 and Orphan streams with previously obtained Sagittarius

observations allowed a simultaneous model to be fit within a logarithmic triaxial

dark matter halo. When two Euler angles are restricted (θ and ψ), we recover the

result of Law & Majewski (2010). Fitting over all orientation angles finds angles

θ = −50◦, φ = 89◦ and ψ consisent with zero. While this is a novel result, it does not

resolve difficulties with the Law & Majewski result regarding the orientation of the

halo’s minor axis. Nor does this model attempt to reproduce the bifurcation of the

Sagittarius leading tail. The detections at 90 kpc from Newberg et al. (2007) are not

consistent with the best fit model of Sagittarius within a logarithmic triaxial halo

model. This does not completely discount their stream membership, but instead

makes the statement that if they are Sagittarius debris, the logarithmic halo is

insufficient to describe the dynamics of the Sagittarius stream.
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5.1 Future Work

This Thesis opens a door to a wide variety of future work, only some of which

can be described here. Work being done to fit the Orphan stream stellar density

will be described, followed by a general discussion of future research directions.

5.1.1 Fitting The Orphan Stream Stellar Density

The stellar density of the Orphan stream was shown in the previous chapter

in Figures 4.13 and 4.14. Photometrically selected F-turnoff stars show a stellar

overdensity near (ΛOrphan,BOrphan) = (22◦, 0◦), which is presumed to be the core

of the Orphan stream projenitor. Figure 4.14 shows the F-turnoff stellar density

as a function of ΛOrphan along the Orphan coordinate system equator. The overall

global behavior, shown in Figure 4.20, was mimicked using a Plummer model with

Mtotal = 106 MSun and rs = 0.2 kpc evolved for 3.945 Gyr.

While these parameters provide an interesting baseline, a research question

emerges: can we use methods similar to orbit fitting to fit the true Orphan stream

stellar density? We develop a fitness function that allows us to evaluate how well a

model simulation fits the data. Next, a method for performing massively distributed

N-body simulations will be described and tested.

5.1.1.1 Construction of a Fitness Function

The Orphan stream stellar density lends itself straightforwardly to the con-

struction of a fitness function. We will use the best fit Orphan Stream orbit derived

in the previous chapter. We evolve that orbit back for a time tback and place N mass

points representing a Plummer sphere of mass M and scale length rs at the predicted

orbit position and velocity. The Plummer sphere is evolved forward for a time t to

produce a disrupted stream. Two times are used because of energy segregation: the

enclosed mass of the dwarf galaxy decreases as it is tidally disrupted. As such, it

speeds up along its orbit and will arrive at a destination point faster than the orbit

will predict.

At this point, the positions of the stream mass points are converted to Orphan

Stream coordinates and binned in ΛOrphan between ΛOrphan = −50◦ and ΛOrphan =
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+50◦ to produce a simulated stream density histogram similar to Figure 4.20.

The number of simulation particles requires special consideration. A sufficient

number of particles are needed to ensure that the resulting histogram is an adequate

representation of the true stream. We therefore need to avoid the small N limit. In

addition, the number of particles affects the N-body simulation time. A large enough

particle count is required to get a good distribution, but a small enough count is

required to avoid excessively long computation times. We therefore choose a particle

count between ten and one hundred thousand. On an averge desktop computer, a

typical Orphan N-body with this number of particles takes on the order of hours.

As will be discussed later, ensuring a sufficiently long computation time is also an

important consideration.

As long as enough particles are present to represent the stream density distri-

bution, the results of the simulations should not depend explicitly on the number

of particles. Since we are attempting to match the true Orphan stream density,

only the ratios between the bins are physically relevant. It would therefore seem

that we should divide each bin by the total number of particles in the simulation.

This presents a troubling obstacle: what is the appropriate normalization factor for

comparison with the real density data? We do not know the total number of stars in

the entire Orphan stream. Nor do we know the ratios between the selected F turnoff

stars and other populations in the dwarf. We only know the number of F turnoff

stars that are in the range ΛOrphan = −50◦ to ΛOrphan = +50◦, and we are explicitly

assuming that the density of the stars follows the mass density of the stream. We

therefore divide the density data by the total number of F turnoff stars between

ΛOrphan = −50◦ and ΛOrphan = +50◦. We also divide the simulation density by the

number of simulation particles between ΛOrphan = −50◦ and ΛOrphan = +50◦. This

ensures a consistent normalization between both.

With the normalized data and simulation histograms established, we construct

a fitness function by summing the residuals between the data and simulation his-

tograms

χ2 =
∑

i

(

Nnorm,model,i −Nnorm,data,i

σN,data,i

)2

, (5.1)
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where σN,data,i =

√
Ndata,i

Ndata,i
, Nnorm,model,i =

Nmodel,i

Nmodel
and Nnorm,data,i =

Ndata,i

Ndata
.

Ndata (Nmodel) is the number of stars (particles) in the range ΛOrphan = −50◦ to

ΛOrphan = +50◦ in the data (simulation).

5.1.1.2 Running the N-body Simulations: Volunteer Computing

We fix the Orphan Stream orbit parameters and Galactic potential to the best

fit values from the previous chapter. Here, we fit only the set of dwarf parameters

~Q = (M, rs, tback, t).

Minimizing a fitness function with a particular search method is a solved prob-

lem. In the previous chapters, we have been able to minimize the orbit metrics

straightforwardly because orbit evaluations take on the order of seconds to com-

plete. Particle swarm and gradient search optimizations for orbit fitting can be

conquered by a desktop computer in a day. For this problem, however, a single

fitness evaluation requires an N-body simulation, which have computation times on

the order of hours. A single desktop computer, even with a supremely optimized

search method, is incapable of approaching this problem.

To remedy this difficulty, we have modified a Barnes & Hut (1986) treecode

to operate over the Berkeley Open Infrastructure for Network Computing (BOINC)

framework used by the Milkyway@Home project. This framework allows volunteer

computers to perform one fitness evaluation each, and have results returned to the

central Milkyway@Home server, which then optimizes the dwarf parameters using

the Framework for Generic Disributed Optimization (FGDO, Desell [2009]). The

orbital and halo parameters are kept constant, and are given by Table 4.5. What is

allowed to vary are the relevant Orphan progenitor parameters: mass, scale length,

and backward & forward evolution times.

5.1.1.3 Verifying Dwarf Parameters with Test Density Fits

In a manner similar to Chapter 3, we first test our fitness function and search

methods using test density distributions. We construct a test Orphan stream density

distribution using the best fit vhalo = 73 km s−1 orbit model from the previous

chapter. We choose M = 16 Mu ≈ 3.6 × 106 MSun, rs = 0.2 kpc, tback = 4 Gyr,
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t = 3.945 Gyr, and N = 105.

We fit the simulated Orphan Stream stellar density using the FGDO framework

of Desell (2009). The N-body model is composed of a 10,000 particle Plummer

sphere with mass, scale radius, and evolution time ranges given in Table 5.1. In a

manner similar to Desell & Willett, et al. (2010), we utilize a differential evolution

search with population size of 300, best parent selection, and a pair weight of 0.5

(Mezura-Montes et al., 2006). Workunits consisting of a set of dwarf parameters

were evaluated by the Milkyway@home users, and returned to the server for analysis

and optimization. Validation was employed to ensure consistent fitness evaluations

for the same sets of parameters. For each generation of the differential evolution

search, the best, median, and average fitness values are recorded and measured

over time. Figure 5.1 shows the evolution of the first Orphan Stream model. The

optimizations were allowed to run until no apparent change existed in the best

fit solution for a period of 24 hours. The best fit parameters to the simulated

dataset are M = 17.6 Mu ≈ 3.951 × 106 MSun, rs = 0.22 kpc, tback = 3.97 Gyr,

t = 3.91 Gyr. The simulated stream histogram is shown in red in Figure 5.2 and

the best fit histogram is shown in green. The best fit solution to the test density

histogram successfully reproduces the parameters of the simulated dwarf galaxy.

Work is currently underway to extend this infrastructure to fit the actual Orphan

Stream stellar density given in Chapter 4.

Parameter Lower Bound Upper Bound
Plummer Mass 1.0 Mu 50 Mu

Plummer scale radius 0.05 kpc 1 kpc
Orbit evolution time 1 Gyr 5 Gyr

N-body evolution time 1 Gyr 5 Gyr

Table 5.1 Simulated dwarf galaxy parameter ranges.

5.1.1.4 Implications of Dark Matter in the Dwarf

The results given above are a step forward in N-body modeling of streams.

However, there is a fundamental assumption being made: all of the simulation

particles are being compared to the F-turnoff stellar distribution of the Orphan

Stream. Put another way, we are creating an N-body simulation of just F-turnoff
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Figure 5.1 Progress of the best, average, and median validated individuals for an
asynchronous differential evolution search with a population of 300 individuals. The
searches were run until the best fit solution remained unchanged for a period of 24
hours.

stars, and neglecting all other stellar types, as well as dark matter. A more complete

model of the Orphan progenitor should include an initial mass function to account

for other stellar types, as well as dark matter.

Previous authors (e.g. Law et al 2005) model dwarf galaxies as a single set of

N-body particles that represent both light and dark matter. The rationale of this

decision is that the light and dark matter both respond the same to the Galactic

potential. This approach is not appropriate for the Orphan Stream problem, be-

cause we are attempting to constrain the total mass of the Orphan progenitor using

observations of only the stars. If we neglect dark matter completely, its contribution

to the mass is lost.

Introducing dark matter into the problem requires careful thought and consid-

eration. Within dwarf galaxies, stars are typically found inside larger dark matter
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Figure 5.2 Simulated and best fit Orphan stream density histogram as a function of
Orphan longitude ΛOrphan. The simulated histogram is generated with parameters
M = 16 Mu ≈ 3.3 × 106 MSun, rs = 0.2 kpc, tback = 4 Gyr, t = 3.945 Gyr,
and N = 105. The best fit parameters are M = 17.6 Mu ≈ 3.951 × 106 MSun,
rs = 0.22 kpc, tback = 3.97 Gyr, t = 3.91 Gyr.

halos. We create toy model Plummer spheres representing the two populations: stars

(mass = 1.1 × 106 MSun, rs = 0.2 kpc) and dark matter (mass = 1.3 × 106 MSun,

rs = 0.5 kpc). These numbers were chosen such that the stellar and dark matter

distributions have approximately the same density. The true mass ratio between

these components is a topic for further study. The smaller stellar Plummer sphere

is placed inside the larger dark matter sphere, and allowed to evolve along the best-

fit Orphan Stream orbit. The density profile of this evolution is shown in Figure

5.3. We see that, as we expected, the dark matter is tidally stripped first, and an

overdensity of dark matter can be clearly seen near ΛOrphan = −40◦. This implies

the mass to light ratio of a two-component dwarf galaxy model is expected to vary

along the stream.

The observation that the light and dark matter do not have the same density
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Figure 5.3 Simulated 2-component Orphan stream density histogram as a function
of Orphan longitude ΛOrphan. The stellar simulated histogram is generated with
parameters M = 5 Mu ≈ 1.1×106 MSun, rs = 0.2 kpc, tback = 4 Gyr, t = 3.945 Gyr,
and N = 105. The dark matter simulated histogram is generated with parameters
M = 6 Mu ≈ 1.3 × 106 MSun, rs = 0.5 kpc, tback = 4 Gyr, t = 3.945 Gyr, and
N = 105. The overdensity of dark matter near ΛOrphan is caused by the outer dark
matter population being tidally disrupted before the stars.

profile raises an important question about the results we obtained in the previous

section. Do the properties we fit apply only to the stellar matter in the Orphan

Stream, or is there a coupling between the light and dark matter which makes the

parameters we fit some combination of both populations? Also, what do the times

represent? Are they the true evolution times of the entire progenitor, or the times

since the light matter became “unshielded” by the dark matter? These are all

questions for future work.

5.2 Research Directions

While the simultaneous model presented in this work is the best fit to the

analyzed tidal streams, it leaves open several questions about the Galaxy itself.
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The Galaxy has been modeled as a static, time independent gravitational potential

mainly for the reason of simplicity. While a variety of shapes have been examined, in

no situation was the potential allowed to be dynamic. The fundamental assumption

was that for at least the last 4 Gyr, a static Galactic potential would be broadly

appropriate. A more dynamic model of the Galaxy, one which includes a time

varying halo mass to incorporate accretion of the very tidal debris that we have

examined, is the next logical step. This introduces a variety of new degrees of

freedom. What is the form of the time dependence? What are its parameters? How

can we begin to analyze it, and does the data exist to place any constraints on it?

Not only can the Galaxy be time varying, but the progenitors of the streams

can also be. The counterintuitive results obtained for the triaxial orientation angle

by Law & Majewski (2010), which have been corroborated by this work, present

drastic problems to the current framework of Galactic formation. A triaxial halo

with the minor axis aligned in the plane of the disk is inconsistent with current

understanding of disk formation. Why have model fits to Sgr led us to this result?

Has there been some interaction with Sgr in the past that could re-orient its tidal

tails? Or is the halo orientation time dependent, and what we’re seeing is a local,

unstable effect?

Perhaps more fundamentally, however, is the concept that the Milky Way’s

dark matter distribution is not smooth. Instead of being describable as a smooth

potential, it is more likely to be a collection of subhalos, which have broad density

fluctuations. The computational capability exists to model such distributions, but

as was mentioned before: does enough data exist to constrain any parameters?

While the Galaxy presents its own opportunities for future work, so do the

very streams we have attempted to understand here. The GD-1 stream contains

density fluctuations that cannot be understood as multiple perigalactic passages

(Grillmair, private conversation). The Palomar 5 tidal stream has been mapped in

the SDSS and contains density fluctuations that are not understood. More mapping

of the Orphan Stream off of the SDSS footprint is needed, to test the hypothesis

of the progenitor lying along the edge of the data. As was shown earlier, mapping

the Orphan Stream distances of the far end of the tail will provide a powerful probe
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of the total halo mass. The bifurcation of the Sagittarius leading tidal tail is still

a matter of contention. Recent work (Peñarrubia et al., 2010; Lokas et al., 2010)

has shown it is a possible effect of internal dwarf rotation, but the matter is far

from settled. The Cetus Polar Stream has only been mapped in segments, and a

complete picture of the south Galactic cap is needed to even begin to understand

its density profile. Only by mapping both stream kinematics and stellar density,

within an elaborate model of the Galaxy, will a more complete understanding of

Milky Way dynamics be obtained.

It is clear that the field of Galactic tidal streams has many challenges awaiting

it. This Thesis lays some ground work to understanding these challenges, but the

brightest days of understanding Milky Way substructure are ahead.
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APPENDIX A

GD-1 Stream Spectroscopic Candidates

SpecID N α δ vgsr σ(v) RV g0 (u − g)0 (g − r)0 [Fe/H] σ([Fe/H]) log g σ(logg) µl µb

◦ ◦ km s−1 km s−1 km s−1 mag mag mag dex dex dex dex mas/yr mas/yr

1154-53083-266 1 125.683891 -0.439561 113.4 7.4 264.7 19.107 0.909 0.275 -1.89 0.08 3.46 0.25 3.5 -4.3

1154-53083-145 1 126.577150 -0.439386 97.8 7.8 249.4 19.102 0.904 0.180 -2.14 0.07 3.62 0.23 12.9 -10.5

1154-53083-155 1 126.645407 -0.340477 109.0 3.6 260.3 18.117 0.935 0.275 -2.06 0.04 3.30 0.22 11.6 -3.9

1760-53086-339 2 131.406984 9.770413 65.8 14.5 186.9 18.389 0.909 0.227 -2.18 0.11 4.05 0.29 9.4 -8.4

2671-54141-432 2 132.157853 11.135851 77.3 6.0 193.9 18.780 0.841 0.406 -2.24 0.04 3.54 0.22 10.0 -5.2

2667-54142-427 2 132.367656 11.325495 70.5 4.0 186.5 17.433 0.987 0.420 -2.17 0.02 2.77 0.24 6.7 -7.4

2667-54142-604 2 133.073392 12.266884 62.3 2.5 175.1 15.859 1.159 0.486 -2.08 0.03 2.22 0.15 8.4 -6.1

2319-53763-347 3 138.399875 22.413022 38.1 11.6 114.5 19.451 0.843 0.243 -2.24 0.22 3.80 0.09 13.2 -7.7

2319-53763-358 3 138.450751 22.434572 40.4 4.7 116.7 17.996 0.865 0.259 -1.93 0.02 3.90 0.10 12.5 -9.7

2319-53763-387 3 138.669378 22.559736 48.9 11.8 124.7 19.603 0.874 0.385 -2.07 0.07 3.68 0.30 12.1 -7.9

2889-54530-311 4 142.787815 29.461085 -0.9 4.2 47.8 17.454 0.972 0.417 -1.98 0.04 3.23 0.28 10.7 -9.4

2914-54533-297 4 142.978804 29.136307 -3.0 3.9 46.9 18.139 0.925 0.189 -2.09 0.04 3.94 0.16 8.8 -9.3

2889-54530-240 4 143.339524 29.620398 -6.2 4.7 41.7 17.933 0.883 0.256 -2.14 0.03 3.63 0.17 9.6 -6.7

2889-54530-204 4 143.424098 29.036453 -3.6 5.1 46.5 17.822 0.872 0.271 -2.21 0.05 3.28 0.20 6.7 -4.5

2889-54530-215 4 143.453188 29.120632 -3.4 1.7 46.4 14.981 1.194 -0.237 -2.09 0.11 3.20 0.17 9.5 -10.9

2889-54530-238 4 143.552948 29.477508 -4.3 4.6 44.1 17.843 0.888 0.293 -2.21 0.01 3.60 0.18 8.4 -9.1

2889-54530-225 4 143.597836 29.802697 -6.1 1.7 41.0 14.845 1.196 -0.102 -1.98 0.06 3.34 0.09 13.7 -11.1

2914-54533-171 4 143.718962 29.874100 -3.6 8.0 43.2 19.432 0.747 0.285 -2.26 0.08 3.33 0.56 15.4 -8.7

2914-54533-458 4 144.107345 30.737924 -9.8 4.8 33.6 18.716 0.779 0.216 -2.26 0.05 4.41 0.10 13.1 -6.5

2914-54533-453 4 144.120941 30.947724 -1.4 4.4 41.2 17.955 0.827 0.220 -2.10 0.02 3.79 0.28 14.3 -6.3

2914-54533-509 4 144.275720 30.280468 -4.4 3.9 40.6 18.292 0.909 0.187 -2.25 0.01 3.46 0.31 9.5 -12.2

2914-54533-515 4 144.487234 30.410401 -4.7 3.6 39.8 18.247 0.855 0.232 -1.82 0.04 3.72 0.15 10.5 -1.6

2914-54533-540 4 144.561728 30.968385 -1.9 11.0 40.4 20.190 0.854 0.344 -1.95 0.10 3.46 0.21 12.6 -3.8

2567-54179-396 5 157.181542 44.514349 -67.9 6.8 -85.0 18.745 0.841 0.254 -2.08 0.04 3.78 0.19 13.9 1.8

2567-54179-246 5 157.565788 43.643316 -73.0 6.0 -87.1 18.630 0.934 0.167 -2.23 0.01 3.71 0.18 12.9 -0.9

2567-54179-238 5 157.691771 43.797748 -71.9 12.7 -86.7 19.546 0.908 0.206 -2.21 0.02 3.27 0.16 10.1 -5.6

2567-54179-189 5 157.817344 43.923322 -70.1 11.9 -85.5 19.761 0.772 0.342 -1.88 0.07 4.23 0.36 9.0 3.5

2567-54179-211 5 157.889540 43.500286 -65.2 10.0 -79.0 19.309 0.901 0.205 -1.89 0.15 3.74 0.07 9.2 -0.3

2567-54179-212 5 158.051293 43.644022 -67.6 5.2 -82.1 18.349 0.839 0.208 -1.90 0.07 3.67 0.26 9.7 -0.2

2567-54179-170 5 158.137638 44.086320 -58.2 9.8 -74.4 19.112 0.863 0.201 -2.04 0.06 3.64 0.17 14.4 -1.7

2567-54179-491 5 158.437074 44.466389 -69.2 9.1 -87.1 18.242 0.880 0.209 -2.02 0.09 3.95 0.16 8.9 -1.9
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SpecID N α δ vgsr σ(v) RV g0 (u − g)0 (g − r)0 [Fe/H] σ([Fe/H]) log g σ(logg) µl µb

◦ ◦ km s−1 km s−1 km s−1 mag mag mag dex dex dex dex mas/yr mas/yr

2567-54179-511 5 158.700621 44.530392 -68.9 4.4 -87.2 18.083 0.954 0.237 -2.22 0.01 3.18 0.25 12.1 1.3

2557-54178-498 5 158.747249 44.686776 -74.2 3.9 -93.2 16.794 1.048 0.476 -2.12 0.02 2.60 0.27 13.5 2.7

2410-54087-297 6 162.371533 47.207633 -87.0 6.9 -118.3 18.893 0.885 0.255 -2.26 0.02 3.46 0.20 15.4 -1.3

2410-54087-236 6 162.451620 48.002695 -85.2 4.2 -119.5 18.305 0.896 0.250 -1.71 0.04 3.51 0.21 8.6 4.8

2410-54087-288 6 162.547222 46.990942 -88.0 12.2 -118.7 19.344 0.893 0.164 -2.08 0.08 3.78 0.14 9.6 -3.8

2390-54094-256 6 162.557763 47.251097 -95.0 2.6 -126.6 16.945 1.048 0.036 -1.83 0.00 3.89 0.19 16.1 -1.5

2410-54087-380 6 162.743760 48.903984 -85.3 5.1 -123.1 18.632 0.840 0.269 -1.80 0.07 3.81 0.05 12.7 -1.6

2410-54087-173 6 163.799206 47.813588 -88.8 7.1 -123.6 18.828 0.845 0.200 -2.06 0.07 3.86 0.30 8.9 -1.8

2410-54087-539 6 164.064054 49.034036 -92.2 8.2 -131.6 19.293 0.925 0.169 -1.68 0.11 3.10 0.30 8.1 -1.7

2410-54087-501 6 164.334475 48.472850 -81.1 7.8 -118.8 19.401 0.925 0.202 -1.76 0.08 3.80 0.28 7.3 0.0

2410-54087-504 6 164.371325 48.224481 -90.6 8.8 -127.4 19.409 0.841 0.208 -1.75 0.07 4.30 0.14 11.3 -0.6

2390-54094-565 6 164.616981 49.202693 -81.1 2.0 -121.6 16.919 1.105 0.487 -1.86 0.01 2.93 0.19 6.9 3.7

2390-54094-615 6 165.199453 48.669262 -92.4 3.9 -131.5 17.895 0.896 0.385 -2.24 0.02 3.81 0.16 11.8 -1.7

2410-54087-637 6 165.381730 48.671045 -87.1 6.2 -126.4 18.928 0.887 0.206 -2.29 0.05 3.84 0.12 7.8 -0.2

2539-53918-406 7 217.430060 59.067783 -163.8 3.0 -297.5 15.805 1.226 -0.133 -2.11 0.03 3.29 0.12 5.9 3.7

2539-53918-070 7 219.681591 57.897316 -148.9 10.7 -283.7 17.970 0.862 0.199 -2.15 0.02 3.73 0.04 2.5 10.8

2539-53918-596 7 219.898491 58.258368 -157.6 5.5 -293.3 17.035 1.197 -0.167 -2.10 0.26 2.92 0.43 1.0 2.9


