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ABSTRACT

We fit the mass and radial profile of the Orphan-Chenab Stream’s (OCS) dwarf galaxy

progenitor by using turnoff stars in the Sloan Digital Sky Survey (SDSS) and the Dark

Energy Camera (DEC) to constrain N-body simulations of the OCS progenitor falling into

the Milky Way on the 1.5 PetaFLOPS MilkyWay@home distributed supercomputer. We

infer the internal structure of the OCS’s progenitor under the assumption that it was a

spherically symmetric dwarf galaxy comprised of a stellar system embedded in an extended

dark matter halo. We optimize the evolution time, the baryonic and dark matter scale radii,

and the baryonic and dark matter masses of the progenitor using a differential evolution

algorithm. The likelihood score for each set of parameters is determined by comparing the

simulated tidal stream to the angular distribution of OCS stars observed in the sky. We fit

the total mass of the OCS’s progenitor to (2.0 ± 0.3) ×107M⊙ with a mass-to-light ratio of

γ = 73.5 ± 10.6 and (1.1 ± 0.2)×106M⊙ within 300 pc of its center. Within the progenitor’s

half-light radius, we estimate a total mass of (4.0± 1.0)×105M⊙. We also fit the current sky

position of the progenitor’s remnant to be (α, δ) = ((166.0± 0.9)◦, (−11.1± 2.5)◦) and show

that it is gravitationally unbound at the present time. The measured progenitor mass is on

the low end of previous measurements, and if confirmed lowers the mass range of ultrafaint

dwarf galaxies. Our optimization assumes a fixed Milky Way potential, OCS orbit, and

radial profile for the progenitor, ignoring the impact of the Large Magellanic Cloud (LMC).

Using second-order forward automatic differentiation, we also attempt to computation-

ally determine the systematic errors introduced from the fixed orbit, gravitational potential,

and lack of an LMC. This paper describes the methods employed to implement automatic

differentiation in areas of our code where derivative information is not propagated, such as

through random number generation and discrete histogram binning. We find that due to

the turbulent and chaotic behavior of our searchable likelihood surface, the systematic errors

derived through automatic differentiation are severely overestimated. Recommendations for

future work to estimate the systematic errors are provided.

xiii



CHAPTER 1

INTRODUCTION

1.1 Using Dwarf Galaxies as Gravitational Probes

A few dozen dwarf galaxies are known to orbit around the Milky Way. Over the course

of billions of years, these galaxies tidally disrupt and stretch around the Milky Way into

tidal streams. The positions and velocities of the stars that make up these streams therefore

carry information about the Galaxy’s gravitational field. As such, these dwarf galaxies act

as gravitational probes for determining the distribution of gravitating mass in the Milky

Way (Ibata et al. 2001; Johnston et al. 2002; Koposov et al. 2010; Newberg et al. 2010;

Law & Majewski 2016; Bonaca & Hogg 2018; Ibata et al. 2021). For example, the path of

the stream probes the Galactic potential, the transverse motion of the stream probes the

time-dependence of the potential, and the width of the stream probes the internal structure

of the original progenitor (Willett 2010). This idea of mapping the Galactic potential with

stellar streams is not new. However, the focus has mostly been on using streams to constrain

the gravitational potential of the Galaxy and hence the structure of its dark halo (Koposov

et al. 2010; Bovy et al. 2016; Bonaca & Hogg 2018). However, it is clear that the streams

are also affected by the internal structure of their progenitors. Here, we fix the potential and

use one well-known halo stream to probe the internal structure of its progenitor.

While examining the Sagittarius Stream, Belokurov et al. (2006) and Grillmair (2006)

independently discovered the Orphan Stream, which was so named due to the lack of a

visible progenitor. The southern portion of the stream was later named Chenab (Shipp

et al. 2018) before it was discovered that both pieces of the stream were generated from

the tidal disruption of the same dwarf galaxy. Therefore, we will refer to the stream as

the Orphan-Chenab Stream (OCS). Preliminary measurements of the OCS found that it

contained old, metal-poor stars possibly from the merger of a satellite galaxy with the Milky

Way. Belokurov et al. (2007) placed a lower bound of 105M⊙ on the total mass of the

OCS’s missing progenitor by studying the interactions of the OCS with the High Velocity

Portions of this chapter previously appeared as: Mendelsohn, E. J., Newberg, H. J., Shelton, S., et al.
2022, Astrophys. J., 926, 106.
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Clouds known as Complex A, the dwarf galaxy Ursa Major II (UMa II), and other globular

clusters (Segue I, Ruprecht 106, and Palomar 1). However, it was later shown in Sales et al.

(2008) that the OCS was kinematically separate from both Complex A and UMa II. In 2010,

Newberg et al. (2010) calculated the orbit of the OCS and showed that a progenitor with a

total mass of 2.5 × 106M⊙ could be used to fit the tidal stream rather well. This mass is

roughly 100 times smaller than most measured Ultra-Faint Dwarf (UFD) galaxies, and other

estimates of the OCS’s progenitor suggest a total mass on the order of 108 to 109M⊙ (Fardal

et al. 2019; Hendel et al. 2018).

The disparity in the progenitor mass estimates is interesting because the measured

velocity dispersions of stars in ultrafaint galaxies lead many to conclude that dwarf spheroidal

galaxies, including ultrafaint dwarf galaxies, have 107M⊙ of mass enclosed within the central

300 pc, independent of the dwarf galaxy’s luminosity (Mateo et al. 1993; Gilmore et al.

2007; Strigari et al. 2008). A mass of a few times 106M⊙ is less than ultrafaint dwarf

galaxies (UFDs) are believed to have. But most measurements of dwarf galaxy masses are

derived from velocity dispersions and the assumption that dwarf galaxies are in equilibrium.

While equilibrium is a reasonable assumption for dwarf spheroidal galaxies, it has been

suggested that observations should be obtained to look for signs of tidal stretching as a check

(Battaglia et al. 2013). UFDs in particular are susceptible to errors in measurement from

velocity dispersion due to their small number of bright stars, complications in measuring

velocities due to the presence of binary stars, and the possibility that tidal forces could make

the assumption of equilibrium invalid. Martin et al. (2008) find that UFDs are elongated,

and suggest tidal disruption is the “least problematic” explanation. Objects that are nearly

completely disrupted or close to apogalacticon could exhibit velocity dispersions that are

systematically an order of magnitude or more higher than equilibrium values due to con-

tamination from extra-tidal stars (Smith et al. 2013; Blaña et al. 2015). Depending on the

angle of observation, enforcing dynamical equilibrium on a dwarf spheroidal galaxy under-

going tidal disruption can either overestimate the mass when measuring dispersion along

its major axis or underestimate it when measuring on a perpendicular axis ( Lokas et al.

2010). As an example, the kinematics of stars in Willman 1 are so far from Gaussian that

one cannot even pretend that it is in dynamical equilibrium for the purpose of computing a

mass-to-light ratio (Willman et al. 2011). In addition, Triangulum II, previously thought to

be the most dark-matter-dominated galaxy known (Kirby et al. 2015), has been downgraded
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to possibly “a star cluster or tidally stripped dwarf galaxy” because the originally measured

velocity dispersion was calculated including a star that is now known to be in a binary sys-

tem (Kirby et al. 2017; Buttry et al. 2021). More recently, a new ultra-faint structure named

DELVE 2 was discovered whose mass-to-light ratio is sensitive to whether or not the system

is undergoing tidal disruption with the Large Magellanic Cloud (LMC), and thus, whether

it is classified as a globular cluster or a UFD (Cerny et al. 2020). Clearly, the mass-to-light

ratios of UFDs, thought to have the highest mass-to-light ratios of any known objects, are

uncertain.

Due to their status as the most dark matter dominated objects in the cosmos, UFDs

are popular targets for dark matter indirect detection experiments. The lack of gamma ray

signals from the centers of ultrafaint galaxies is being used to place upper limits on the

properties of the as yet undetected dark matter particles (Abdallah et al. 2020). Null results

from dark matter searches in dwarf galaxies with Fermi LAT data have provided some of the

strongest constraints on the dark matter annihilation cross section (Ackermann et al. 2015);

more recently, very weak excesses have been found in three ultrafaint dwarf galaxies (Albert

et al. 2017), but one is already found to be from a background source (Li et al. 2021). But

indirect detection experiments rely heavily on the estimate of the amount of dark matter

above background that they are targeting to determine the detection limits. If we find that

UFDs are less massive than previously assumed, the constraints these experiments put on

dark matter particles would be modified.

1.2 Overview

Using the petaFLOPS-scale MilkyWay@home volunteer supercomputer, Shelton et al.

(2021) showed that in a perfect world it would be possible to determine the mass and radial

profile of both the stars and the dark matter in a dwarf galaxy progenitor that fell into the

Milky Way and was ripped apart into a tidal stream, using only the density distribution of

stars in the tidal stream. In this context a perfect world means that the Milky Way potential

is known and does not change with time, the orbit of the progenitor in the potential is

known, and the dwarf galaxy is known to consist of a Plummer sphere distribution of stars

embedded in a Plumber sphere distribution of dark matter, created so that the combination

is in stable equilibrium. In this case, only the mass and Plummer radius of the two dwarf

galaxy components and the evolution time of the simulation need to be fit.
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This method of determining the progenitor satellite’s properties from the tidal stream

it produces does not rely the on assumption of dynamical equilibrium. We use Milky-

Way@home to generate a large population of simulated dwarf galaxies with varying masses

and shapes. Each dwarf galaxy is placed within a static Milky Way potential and evolved for

a given amount of time to create a simulated tidal stream. This simulated tidal stream is then

compared with the measured distribution of stars in the actual OCS and is assigned a like-

lihood that a dwarf galaxy with those simulated parameters produced the observed stream.

We use differential evolution to evolve the dwarf galaxy parameters until the generated tidal

stream closely matches the stellar data.

Our goal is to use MilkyWay@home to measure the mass and shape of the stars and

dark matter in the progenitor galaxy that was tidally disrupted to become the OCS. In Chap-

ter 2, we explain how we used stellar data from the Sloan Digital Sky Survey (SDSS) and the

Dark Energy Camera (DECam) to fit the progenitor of the OCS using MilkyWay@home. In

Chapter 3, we go over some of the new algorithmic changes we implemented to add the Large

Magellanic Cloud into the Milky Way gravitational system. Chapter 4 is a review of our

implementation of automatic differentiation as a build option for the N-body executable,

including the complicated derivations of the equations necessary to propagate derivative

information through certain portions of the code where classical derivatives cannot be cal-

culated. Chapter 5 reports the results of our automatic differentiation, and our conclusion

is found in Chapter 6.



CHAPTER 2

A PRELIMINARY FIT OF THE ORPHAN-CHENAB

PROGENITOR

2.1 Stellar Data of the OCS

To optimize our dwarf progenitor’s parameters, we need accurate stream data to com-

pare against our simulations. To this end, we extract the density of stars along the OCS

as well as its width using actual data from the sky. We then parse it into a binned his-

togram which MilkyWay@home will compare with simulations. We use data from both the

Sloan Digital Sky Survey (SDSS; Blanton et al. 2017) and the Dark Energy Camera (DEC;

Flaugher et al. 2015) to map the OCS. We use the same Lambda-Beta (Λ, B) coordinate

system defined in Newberg et al. (2010) to follow the stream across the sky. Since the OCS

does not follow a great circle across the sky and does not maintain the same distance from

us as a function of Λ, we apply corrections to the unextincted magnitude in the g-band (g0)

and the B coordinate. The equations for these corrected values are as follows:

gcorr = g0 − 0.00022Λ2 + 0.034Λ, (2.1)

Bcorr =

B + 0.00628Λ2 + 0.42Λ + 5.0 Λ ≤ −15.0◦

B Λ > −15.0◦
, (2.2)

as calculated in Newberg et al. (2010). To select F-turnoff stars at the same distance as the

OCS, we filter stars such that 20.7 < gcorr < 21.7. Because we removed faint stars (keeping

g0 < 22.5) so that we do not need to consider a variable reduction in completeness (Newberg

et al. 2002; Weiss et al. 2018), we miss fainter OCS stars at lower ΛOCS, where the stream

is further away. We correct for the missing data when generating the binned histogram.

This chapter previously appeared as: Mendelsohn, E. J., Newberg, H. J., Shelton, S., et al. 2022,
Astrophys. J., 926, 106.
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2.1.1 SDSS Data

From the SDSS DR16 release (Ahumada et al. 2020), we selected all stars with right

ascension (α) between and 123.75◦ and 172.0◦ and declination (δ) between −25.0◦ and 60.0◦.

We define our on-field to be the remaining stars within 2 degrees of Bcorr = 0◦ and our

off-field to be the stars with 2.0◦ < |Bcorr| < 4.0◦. The difference between these two fields in

a given Λ bin is defined to be the excess in that bin. To avoid overlap between our two data

sets, we also apply a Λ cut to the SDSS data, keeping only stars with Λ < 21◦.

We select F-turnoff stars with a (g − i)0 color between 0.12 and 0.47. We select this

color range to maximize the signal-to-noise ratio between the on-field and off-field stars (see

Figure 2.1). We also filter stars such that 17.0 < g0 < 22.5. To remove stars in front of or

behind the OCS we enforced a distance cut of 20.7 < gcorr < 21.7, which is the same cut

applied in Newberg et al. (2010).

Figure 2.1: Distribution of stars based on (g − i)0 color. Blue represents stars in
the on-field, and green reflects the off-field. The strongest signal
can be detected by allowing stars with 0.12 < (g − i)0 < 0.47, where
we see the largest excess in on-field star counts. We represent the
upper and lower bounds of this range with red lines in this plot.
Only data from the SDSS is shown in this histogram.

The errors in the counts are assumed to follow a Poisson distribution. Thus, the error
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of the counts in the ith Λ bin Ni, for both the on-field and the off-field, is simply given by:

σNi
=
√

Ni. (2.3)

To account for the incompleteness in our fields at ΛOCS < −21◦, we must calculate what

fraction of each Λ bin is filled. Since the incompleteness results from the g0 = 22.5 magnitude

limit, we can use Newberg et al. (2010) to exactly determine the boundary gb(ΛOCS):

gb(ΛOCS) = agΛ
2
OCS + bgΛOCS + cg, (2.4)

where ag = −0.00022, bg = 0.034, and cg = 22.5. As can be seen in Figure 2.2, there are

more F-turnoff stars at higher magnitudes in both the on-field and the off-field. We therefore

correct for the missing stars by fitting a linear model to the star counts as a function of gcorr,

as described in Appendix A.

Figure 2.2: F-turnoff stars from SDSS binned in gcorr with −21◦ < ΛOCS < 21◦,
excluding the range −7◦ < ΛOCS < 10◦ to avoid contamination from
the Sagittarius Stream. We see a slight increase in star counts as
we approach higher gcorr. The rate of increase is slightly higher for
the on-field than for the off-field.

2.1.2 DEC Data

The DEC data was taken from Grillmair et al. (2015). As the DEC uses the same

g-band and i-band filters as the SDSS, we applied the same color and magnitude cuts as in

the SDSS data, keeping stars with 21◦ ≤ Λ ≤ 48◦. We define our on-field and off-field in
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the same way as we did for the SDSS data. However, as can be seen in Figure 2.3, the DEC

data does not completely fill our on and off-fields.

Figure 2.3: Footprint of stellar data from the SDSS and DEC in Galactic
longitude (l) and Galactic latitude (b). As can be seen in the DEC
data (right), the data is incomplete as much of its off-field (yellow)
is unobserved. There are also places where the on-field (blue) is
incomplete. Our (g − i)0 and g0 cuts were used to generate this
footprint. The pink line shows the orbit of the OCS as determined
from Newberg et al. (2010).

To correct our fields for the lack of data, we apply Monte Carlo approximations to “fill

in” the missing patches in the sky. For the ith Λ bin in the on-field, we randomly populate

the bin with 8192 (213) test stars. For each test star, we check whether the test star is within

0.18◦ of a real star in that bin. We selected 0.18◦ as our threshold because this was slightly

larger than the maximum nearest-neighbor angular distance between two stars in the DEC

data. We count the number of test stars within 0.18◦ of a real star, pi, and divide it by the

total number of test stars, M = 8192, to get the “filled” fraction of the ith bin, ki:

ki =
pi
M

. (2.5)

Assuming a Poisson distribution for pi, we derive the following expression for the error in ki:

σki =

√
pi

M
. (2.6)
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By dividing the number of counts in an on-field bin Ni by the ratio ki, we can approximate

the true number of stars in that bin:

N ′
i =

Ni

ki
. (2.7)

This means that the errors in counts in the Λ bin are given by:

σN ′
i

=
1

ki

√
σNi

2 +

(
Ni

ki

)2

σki
2 =

1

ki

√
Ni

(
1 +

Ni

Mki

)
. (2.8)

We apply the same process to each bin in the off-field as well.

2.1.3 Distribution of Stream Stars Along ΛOCS

After combining the stellar data from the SDSS with those from the DEC, we look at

each bin and calculate the number of stars within the on-field and off-field. Using the off-

field as a background, we subtract it from the on-field and determine the excess within the

stream. The excess of the ith bin (Ei) and its error (σEi
) are calculated using the following

formulae:

Ei =

Non,i −Noff,i Non,i ≥ Noff,i

0 Non,i < Noff,i

(2.9)

σEi
=
√

σNon,i
2 + σNoff,i

2. (2.10)

The excess and errors of each bin are listed in Table 2.1 along with the number of stars in

each on-field and off-field bin. We also present a histogram representing this data in Figure

2.4. Using our cuts, we find an excess of 5, 631 ± 356 F-turnoff stars in the OCS within

the range of −33◦ ≤ Λ ≤ 48◦. For the purposes of our likelihood calculation which we will

describe later, we also calculate the normalized excess star count (ei) and its error (σei):

ei =
Ei∑
j Ej

(2.11)

σei =
1∑
j Ej

√
(1 − 2ei)σ2

Ei
+ e2i

∑
j

σ2
Ej

(2.12)
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Figure 2.4: The on-field (red), off-field (green), and excess(blue) of the OCS.
Error bars of the excess are shown in the blue brackets.

2.1.4 Estimation of Total Stellar Mass

The simulations include bodies that represent both the baryons (stars) and the dark

matter. The baryonic simulation bodies represent all of the stellar mass, not just the mass

of the turnoff stars. Therefore, to constrain the mass of the OCS, we must relate the number

of F-turnoff stars in the sky to an amount of baryonic mass. To accomplish this, we search

for a globular cluster whose CMD properties most closely match those of the OCS. Once we

find a globular cluster with a turnoff star color that is close enough to that of the OCS, we

use that globular cluster to estimate the stellar mass per F-turnoff star in the OCS. Simply

multiplying this ratio by the number of F-turnoff stars we detect in the OCS will give us an

approximate stellar mass. For our analysis, we look at 11 candidate globular clusters using

the globular cluster data from An et al. (2008).

It should be noted that because An et al. (2008) uses the dust map from Schlegel et al.

(1998) to calculate their unextincted magnitudes and our stellar data calculates extinctions

using Schlafly & Finkbeiner (2011), we need to correct the magnitudes from our globular

clusters to adjust for over-reddening. Before we perform our globular cluster analysis, we

add the extinction calculated from Schlegel et al. (1998) to each star’s magnitude in An et al.

(2008) and then subtract the extinction derived from Schlafly & Finkbeiner (2011).
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Table 2.1: The number of F-turnoff stars in the on-field and off-field as a
function of Λ. We notice a small gap in the OCS at Λ = 10.5◦,
however our optimizations will not be able to properly resolve the
gap due to the large error of its associated bin. We split this table
in terms of the SDSS data (top) and the DEC data (bottom).

Λ Center On-Field Off-Field Excess (E) Error (σE)
-31.5 1314 1136 178 40
-28.5 1315 1144 171 44
-25.5 1283 1178 105 46
-22.5 1335 1271 64 49
-19.5 1412 1262 150 52
-16.5 1542 1395 147 54
-13.5 1774 1530 244 57
-10.5 1891 1676 215 60
-7.5 1990 1893 97 62
-4.5 2286 2173 113 67
-1.5 2722 2596 126 73
1.5 2737 2567 170 73
4.5 2329 2201 128 67
7.5 1989 1822 167 62
10.5 1933 1927 6 62
13.5 1968 1821 147 62
16.5 2006 1850 156 62
19.5 2152 2004 148 64
22.5 2480 2294 186 69
25.5 2646 2269 337 70
28.5 2546 2189 357 69
31.5 2686 2356 330 71
34.5 2668 2134 534 69
37.5 2611 2163 448 69
40.5 2817 2445 372 73
43.5 2637 2491 146 72
46.5 2953 2597 356 74

When selecting globular cluster stars for our F-turnoff color calculation, we must search

over a defined magnitude range for each cluster. To select this range, we plot a color-

magnitude diagram (CMD) in (g − i)0 and g0. We set the minimum (brightest) turnoff

magnitude at the intersection of the subgiants with the Red Giant Branch (RGB). We

record the (g− i)0 color of the intersection and determine the brightest magnitude for Main

Sequence (MS) stars of that color, defining that g0 as the maximum turnoff magnitude. The

ranges are listed Table 2.2, and the CMDs of each candidate can be seen in Figure 2.5.
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Using these stars, we generate two one-dimensional histograms with bins in (g − r)0

and (g − i)0 color, respectively. We then fit the histogram to a skew normal distribution

with a linear background. The model has the form:

f(x) = mx + b + Ae−
(x−ξ)2

2ω2

(
1 + erf

(
γ

(
x− ξ

ω
√

2

)))
, (2.13)

where m is the linear slope, b is the linear y-intercept, A is the amplitude, ξ is the “unskewed”

mean, ω is the “unskewed” standard deviation, and γ is the skew parameter. In our fits, we

assume that γ ≥ 0 because we expect the number of stars to drop off more slowly towards

the redder end of the distribution. We fit these six parameters using a χ2 best-fit method

and a differential evolution algorithm. We run the algorithm 10 independent times and keep

the best fit to ensure our χ2 fit does not fall into a local minimum. After fitting the six

parameters, we calculate the Hessian of the natural logarithm of the χ2 surface around that

minimum. By inverting the Hessian, we derive the covariance matrix of the fitted parameters:

(H lnχ2)−1 =


∂2 lnχ2

∂x1
2

∂2 lnχ2

∂x1∂x2
· · ·

∂2 lnχ2

∂x2∂x1

∂2 lnχ2

∂x2
2 · · ·

...
...

. . .


−1

=


σx1

2 σ2
x1x2

· · ·
σ2
x2x1

σx2
2 · · ·

...
...

. . .

 . (2.14)

Each second derivative is calculated numerically using a finite step size, where each

ith parameter is assigned a step size hi. We approximate each second derivative using the

following formula:

∂2f

∂xi∂xj

≃


f(xi−hi,xj−hj)−f(xi−hi,xj+hj)−f(xi+hi,xj−hj)+f(xi+hi,xj+hj)

4hihj
i ̸= j

f(xi−hi)−2f(xi)+f(xi+hi)

hi
2 i = j.

(2.15)

After calculating the errors of each parameter, we take these errors and set them as the

new step size for each of their respective parameters. We then calculate the Hessian again,

taking those errors and feeding them back into the Hessian calculation over and over until

the errors converge within a significantly small enough threshold (0.0001).

Taking our six fitted parameters and their errors, we calculate the mode of the fitted

distribution. While skewed normal distributions do not have an analytical solution for the

mode (Mo), there does exist a numerical approximation for it while γ ≥ 0:
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Mo ≃ ξ + ω

ζ

√
2

π
−
(

4 − π

4

) (ζ√ 2
π

)3
1 − 2

π
ζ2

− 1

2
e−

2π
γ

 , (2.16)

where

ζ =
γ√

1 + γ2
. (2.17)

Running our SDSS OCS data through this pipeline, we find that the excess of the OCS

has a peak (g− r)0 color of 0.214± 0.066 and a (g− i)0 color of 0.286± 0.083. We similarly

run our 11 candidate globular clusters through our algorithm to determine which has the

closest color peak. Table 2.2 lists the color peaks for each of these globular clusters.

Table 2.2: Peak turnoff star color and magnitude range for each of our 11
globular clusters.

Globular Cluster g0 F-Turnoff Range (g − r)0 (g − i)0
M2 19.0 - 21.0 0.351±0.015 0.457±0.028
M3 18.5 - 20.5 0.309±0.022 0.382±0.047
M5 18.0 - 20.0 0.326±0.024 0.456±0.051
M13 18.0 - 20.0 0.318±0.035 0.425±0.056
M15 18.75 - 20.75 0.338±0.020 0.483±0.033
M53 19.75 - 21.5 0.264±0.034 0.351±0.042
M92 18.0 - 20.0 0.262±0.027 0.359±0.043

NGC 4147 20.0 - 21.5 0.267±0.038 0.353±0.050
NGC 5053 19.5 - 21.5 0.241±0.025 0.326±0.041
NGC 5466 19.25 - 21.25 0.283±0.024 0.351±0.029
Palomar 5 20.5 - 22.25 0.361±0.040 0.505±0.053

The globular cluster whose peak F-turnoff star color is most similar to that of the OCS is

NGC 5053.

After determining which globular cluster to use, we count the total number of F-turnoff

stars we see in NGC 5053 from the photometric data provided by An et al. (2008), applying

the same color cuts we employed in our stream separation using the turnoff range measured

for NGC 5053, selecting stars with 0.12 < (g − i)0 < 0.47 and 19.5 < g0 < 21.5. However,
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Figure 2.5: CMDs of our 11 candidate globular clusters for our OCS color
proxy. We plotted this data using TOPCAT (Taylor 2005) and
globular cluster data from An et al. (2008). The red lines show the
g0 boundaries of our turnoff range, and the blue line represents the
peak (g − i)0 color.

since globular clusters have a high stellar density in the sky, it is difficult to resolve all of

the stars within the center of the cluster. Although An et al. (2008) uses a DAOPHOT

pipeline that is specifically designed for crowded-field stellar photometry (Stetson 1987) to

parse the SDSS data, we find that there are still stars which are not resolved. To correct for

the missing stars, we fit the radial distribution of NGC 5053 to that of a Plummer sphere.
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The 2D surface number density of a Plummer sphere is given by:

Σ(R) =
Ntotala

2

π(R2 + a2)2
, (2.18)

where the number of stars ∆N within ∆R of radius R from the center of the cluster is

represented with the formula:

∆N = 2πRΣ(R)∆R. (2.19)

We fit the total number of F-turnoff stars (Ntotal) and the angular scale radius (a) to

NGC 5053 using the method of least squares, setting the radius R for a given star as the

angular distance between that star and the center of the cluster, which we find to be at

(α, δ) = (199.107◦, 17.6927◦). To ensure our fit is not heavily impacted by the overcrowding

near the center of the globular cluster, we exclude all stars within the central core by requiring

R > θ1/2 ∼ 0.035◦, where θ1/2 is the angular distance from the globular cluster’s center to

where the stellar density drops to half of its maximum value. Figure 2.6 shows the radial

distribution of F-turnoff stars in NGC 5053 and the fitted Plummer curve.

Correcting for missing stars near the center of the cluster, we find a total of 3, 932±110

F-turnoff stars within NGC 5053. Taking the mass of NGC 5053 to be (5.37±1.32)×104M⊙

(Baumgardt 2017), we calculate that each turnoff star represents a stellar mass of roughly

(13.7 ± 3.4)M⊙. A calculation of the mass per turnoff star using isochrones, which finds a

similar value, is done in Appendix B. Multiplying this number by the 5,631±356 F-turnoff

stars we calculate in the OCS gives us a total baryonic mass of (7.7 ± 2.0) × 104M⊙ within

the range −33.0◦ < Λ < 48.0◦.

2.1.4.1 Systematic Error from Using a Redder Globular Cluster

While the turnoff color of NGC 5053 matches that of the OCS within errors, the

globular cluster does have a somewhat redder measure of turnoff color. To illustrate how

a redder color would impact our estimate of the mass per turnoff star, we recalculate this

quantity using all of our other globular clusters as the reference. Table 2.3 below shows the

mass per F-turnoff star we find if we use each of these redder globular clusters as a reference.
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Figure 2.6: Radial distribution of stars in NGC 5053 that passed our color
cuts. The stellar densities (red) in the outer radii of the globular
cluster fit relatively well to a Plummer distribution (black). Only
data points to the right of the dotted blue line contributed to the
fit. We notice a sizeable number of F-turnoff stars missing in the
core due to high stellar density in the center.

Table 2.3: Mass per F-Turnoff star using different globular clusters as a
reference. The total mass of each globular cluster, with the
exception of M13, NGC 5053, and Palomar 5, came from Kimmig
et al. (2015). M13’s total mass was pulled from Leonard et al.
(1992) and Palomar 5’s mass came from Odenkirchen et al. (2002).

GC Mass (M⊙) F Stars Mass/Star (M⊙)
M2 (5.75±2.65)×105 16,701±1,687 34.4±15.9
M3 (4.68±1.40)×105 15,808±261 29.6±8.9
M5 (3.89±1.16)×105 12,061±376 32.3±9.7
M13 (6.05±0.33)×105 17,464±554 34.6±2.2
M15 (5.13±1.06)×105 6,543±1,843 78.4±27.4
M53 (3.48±1.04)×105 10,913±328 31.9±9.6
M92 (2.75±0.57)×105 11,382±1,107 24.2±5.5

NGC 4147 (3.72±2.82)×104 1,564±87 23.8±18.1
NGC 5053 (5.37±1.32)×104 3,932±110 13.7±3.4
NGC 5466 (3.80±2.45)×104 4,425±126 8.6±5.5
Palomar 5 (5.2±0.7)×103 528±37 9.8±1.5
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Plotting the mass per turnoff star as a function of the peak color (Figure 2.7), we

see that redder globular clusters typically produce a larger calculated mass per turnoff star.

Fitting these points to an exponential curve of the form ln(M/M⊙) = r(g − i)0 + ln(A), we

find r = 17.7± 4.6 and ln(A) = −3.96± 1.89 (χ2 = 14.8). This implies that using a globular

cluster for the mass estimate of a stellar system with a bluer peak color overestimates its mass.

Because we select a fixed (blue) color range to select our turnoff stars (0.12 < (g−i)0 < 0.47),

it makes sense that using a redder globular cluster would result in fewer stars falling within

this color range, and thus give us a larger stellar mass per turnoff star. If we extrapolate the

curve to find the mass per turnoff star using a globular cluster with a color similar to the

OCS, we find 3.0 ± 6.9M⊙ per turnoff star, roughly one quarter of the mass per turnoff star

estimated using NGC 5053. It should be noted, however, that we do not use this extrapolated

mass per turnoff for analyzing the OCS due the extrapolation’s poor fit and large errors. We

instead use the mass per turnoff derived from NGC5053, keeping in mind that any masses

we fit using this data are overestimates.

2.1.5 Beta Dispersion as a Function of Position Along the Stream

To fit the apparent width of the stream as a function of Λ, we measure the Beta

dispersion of the OCS by splitting each Λ bin into 20 B bins, covering both the on and off

fields. In each Λ bin, we fit the distribution of B values to a Gaussian distribution with a

linear background, taking the fitted σ value as the Beta dispersion:

f(x) = mx + b + Ae−
(x−µ)2

2σ2 , (2.20)

where m is the slope of the background, b is the y-intercept, A is the amplitude, µ is the

mean, and σ is the standard deviation of the Gaussian distribution.

To ensure a larger sample size, we group each consecutive set of three Λ bins into a

single bin for the purposes of the Beta dispersion calculation. We employ the same Monte

Carlo method of bin completion used in Section 2.1.2 to determine the number of stars in

each Beta bin. However, we exclude any bins whose data coverage is less than half of the

bin area from our fit. We use the “curve fit” algorithm from SciPy (Virtanen et al. 2020) to
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Figure 2.7: A plot of the peak turnoff color versus the mass per turnoff star for
various globular clusters. Redder globular clusters seem to have a
larger mass per F-turnoff star, following an exponential curve. The
solid red curve shows the curve of best fit (χ2 = 14.8) while the
dashed red lines are the curves one standard deviation above and
below the best fit. The curve has the form
ln(M/M⊙) = r(g − i)0 + ln(A), where r = 17.7 ± 4.6 and
ln(A) = −3.96 ± 1.89.

fit the beta dispersions and their respective errors. Figure 2.8 shows the fit in each set of Λ

bins while Table 2.4 lists the numerical values of the Beta dispersion and their errors.

2.2 N-Body Simulations

For a given set of dwarf galaxy parameters, we calculate the likelihood that those

parameters produce the observed data histogram, as constructed from the values calculated

in Section 2.1. This section summarizes the methods and algorithms that are laid out in

more detail in Shelton et al. (2021).

To calculate the likelihood of a set of progenitor dwarf galaxy parameters, we place the

prescribed simulated dwarf galaxy in a static Milky Way potential and let it evolve through
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Figure 2.8: The distribution of stars within each set of Λ bins as a function of
B. The open circles represent the number of stars in each B
sub-bin, and the black line is the curve of best fit using Equation
2.20. We excluded B sub-bins from the fit if that sub-bin was less
than half filled due to the incomplete areal coverage of the DEC
data.

time, interacting with with the gravitational well and its own bodies. We employ multi-

threading in our N-body algorithm to speed up our calculations. After running the simulation

for a prescribed number of timesteps, we calculate the likelihood that the simulated and

observed streams result from the same progenitor.

2.2.1 Progenitor Creation

We represent our simulated dwarf galaxy as a collection of 40,000 bodies; half of the

bodies represent visible baryonic matter, and the other half represent dark matter. Regard-

less of the baryonic and dark matter masses, we employ the same number of bodies, changing
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Table 2.4: Fitted values for the Beta dispersion and dispersion error in each Λ
range.

Λ Range Beta Dispersion Dispersion Error
[−33.0,−24.0] 1.003 0.323
[−24.0,−15.0] 1.001 0.208
[−15.0,−6.0] 1.076 0.218

[−6.0, 3.0] 0.612 0.146
[3.0, 12.0] 0.791 0.308
[12.0, 21.0] 0.947 0.257
[21.0, 30.0] 0.886 0.193
[30.0, 39.0] 2.263 0.825
[39.0, 48.0] 1.230 0.275

the mass per particle to represent the full mass of a component. We choose 40,000 bodies

because it is the minimum number of particles needed to consistently generate the same

stream over different random seeds (see Figure 2.9).

To model our progenitor dwarf galaxy, we arrange our 40,000 bodies into two nested,

concentric Plummer spheres (Plummer 1911). The radial profile of a Plummer sphere is

given by:

ρ(r) =
3M

4πa3

(
1 +

r2

a2

)−5/2

, (2.21)

where a is a scale radius, and M is the total mass of the Plummer sphere. Each progenitor

can thus be described by four parameters, the baryonic mass (MB), the dark matter mass

(MD), the baryon scale radius (aB), and the dark matter scale radius (aD). However, since

the properties of our dwarf galaxies have a degree of scale invariance, it is more efficient to

optimize over the total baryonic component (MB and aB) and a two ratios (ξR and ξM).

These ratios are defined as follows:

ξR =
aB

aB + aD
, (2.22)

ξM =
MB

MB + MD

. (2.23)

The method we use to randomly generate these progenitor dwarf galaxies is detailed in
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Figure 2.9: Plot of average likelihood score as a function of the number of
bodies. The likelihood is a measure of how well an individual
simulation matches the comparison simulation; zero likelihood is a
perfect reproduction. Each point represents the likelihood score of
a simulation against a comparison stream generated using the same
dwarf parameters averaged over 12 random seeds. Each run
calculates the likelihood using the same comparison stream, which
was run using 100,000 bodies. The red dashed line is where the
number of bodies equals 40,000. Since this is within the area where
the likelihood curve flattens, we choose to run 40,000 bodies in all
of our simulations.

Shelton et al. (2021).

We determine the starting location of the progenitor by first specifying its present-

day position and velocity, which we calculated using an orbit for the OCS determined from

Newberg et al. (2010). Using its present-day position and velocity, we integrate a single-

body orbit backwards in time up to the evolution time τevolve to find the progenitor’s starting

position and velocity, centering the 40,000 body simulated progenitor at that point. Although

the orbit remains fixed across simulations, we determined it from different information than

we will use to measure the dwarf galaxy parameters; the orbit was fit using sky position,

line-of-sight velocity, and heliocentric distance.

Our progenitor dwarf galaxy is thus completely characterized with five parameters:

the evolution time τevolve, the baryonic Plummer radius aB, the radius ratio ξR, the baryonic

Plummer mass MB, and the baryonic mass ratio ξM . As such, these are the parameters we

wish to optimize over using MilkyWay@home.
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2.2.2 Accelerations on Each Body

Our Milky Way potential consists of 3 components: a Miyamoto-Nagai disk, a Hern-

quist bulge, and a logarithmic halo (Miyamoto & Nagai 1975; Hernquist 1990; Sakamoto

et al. 2003). Our Spherical Hernquist bulge has a scale radius of 0.7 kpc and a mass of =

9.9 × 1010 M⊙(Law et al. 2005). The Miyamoto-Nagai disk in our simulations has a scale

radius of 6.5 kpc, a scale height of 0.26 kpc, and a mass of 3.4 × 1010 M⊙ (Law et al. 2005).

We implement a logarithmic halo with a circular velocity of 73 km s−1 (74.61 kpc Gyr−1)

(Newberg et al. 2010) and a scale radius of 12 kpc (Law et al. 2005) to model the dark

matter halo. We translate these potentials into accelerations by calculating the negative

gradient of each potential (a = −∇ϕ). Within our simulations, we represent distances in

kiloparsecs (kpc), time in gigayears (Gyr), and mass in Structure Masses (SM), where 1 SM

= 222,288.47 M⊙. Using these units, G = 1.

Our algorithm uses classical Newtonian gravitation to calculate the acceleration be-

tween two bodies. We employ a Barnes-Hut tree algorithm (Barnes & Hut 1986) which has a

complexity of O(NlogN) to speed up calculations. Our N-body simulations employ a Veloc-

ity Verlet method (Verlet 1967) to calculate the new positions and velocities of each particle

at the end of each timestep. We use this Velocity Verlet algorithm because it is a symplectic

integrator, meaning the area of its phase space is conserved as the system evolves through

time. This property is especially attractive for our integrator since it implies that energy is

conserved as the dwarf galaxy falls into the Milky Way, an important constraint that must

be maintained throughout our N-body simulations. The calculation of our accelerations,

timestep, and softening length is further detailed in Shelton et al. (2021).

2.2.3 Phase Space Evolution Method

After establishing the Milky Way potential and creating the progenitor dwarf, we

determine the starting point of our simulation by defining approximately where we expect

the progenitor’s core to lie in the stream at the present time, and thus where we would like

the simulated progenitor core to end up at the end of the simulation. For the OCS, we

place this starting point at (l, b, R) = (258.0◦, 45.8◦, 21.5 kpc) with a velocity (vx, vy, vz) =

(−185.5, 54.7, 147.4) kpc Gyr−1. This velocity is given in right-handed Galactic Cartesian

coordinates, in which the X-axis is the direction from the Sun to the Galactic Center and

the Y-axis is in the direction of the Sun’s motion. This starting point defines the orbit of the
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OCS and was calculated using the orbit fit from Newberg et al. (2010). We place a single

body at the starting point and evolve that body backwards in time by our evolution time,

τevolve. We replace the body with the simulated dwarf galaxy progenitor, and the N-body

integration begins.

2.2.4 Likelihood Calculation

After running a simulation to completion, we need to translate the resulting tidal

stream into a histogram to compare with the data histogram. We transform our bodies

into a Lambda-Beta (Λ, B) system that follows the OCS along its B = 0 great circle. We

use the same coordinate system as derived in Newberg et al. (2010). We split the stream

into a histogram that consists of 28 Λ bins subtending the range (−33◦, 48◦) and one Beta

bin covering the range (−15◦, 15◦). Within each bin, we record the number of bodies and

normalize the counts with respect to the total number of bodies within the histogram’s range.

We also calculate the Beta dispersion at each Λ where we have a measured stream width.

To compare the similarity between two histograms, we employ a metric called the

likelihood score. This value represents the natural logarithm of the probability that two

histograms match. As such, the likelihood score ranges from negative infinity (worse case set

to -9999999.9) to 0, where a higher likelihood is indicative of a closer match. Our likelihood

score consists of 3 components: the Earth Mover Distance (EMD) Component, the Cost

Component, and the Beta Dispersion Component.

The EMD Component (Rubner et al. 2000) measures how well the shapes of two

normalized histograms match each other. Given two histograms, one representing the number

of stream stars as a function of Λ and the other representing the number of simulation bodies

as a function of Λ, the code calculates the minimum amount of “work” necessary to deform

one histogram into the other and translates that work into an EMD score. If the EMD score

is greater than some maximum EMD score we define (EMDmax = 50), the code outputs the

worst case likelihood score. Otherwise, we calculate the EMD component to be:

ln(LEMD) = 300 ln

(
1 − EMD

EMDmax

)
(2.24)

The Cost Component compares the total mass within each histogram and adds a

penalty commensurate to the mass difference. We utilize this component because the EMD

score can only be calculated if both histograms are normalized, so the information about
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their mass is lost. The Cost Component is given by:

ln(LCost) = − (MsimNsim −MdataNdata)
2

2
(
M2

dataNdata + M2
simNsim

(
Nsim

Ntotal

)(
1 − Nsim

Ntotal

)) (2.25)

where Msim is the mass per body in the simulation, Mdata is the mass per turnoff star we

calculated in Section 2.1.4, Nsim is the number of baryonic bodies within the histogram’s

range, Ndata is the number of turnoff stars within the histogram’s range (5,631 stars), and

Ntotal is the total number of baryonic bodies we ran in the simulation (20,000).

The Beta Dispersion Component compares the width of the streams as a function of

Λ. For each Λ bin in the simulation, we calculate the Beta dispersion σβ,sim,i and its error

δσβ,sim,i
, and then compare them to the values determined from the stellar data, σβ,data,i and

δσβ,data,i
. The formula for the Beta Dispersion Component is given by:

ln(LDisp) = −1

2

Nbins∑
i

(σβ,sim,i − σβ,data,i)
2

δ2σβ,sim,i
+ δ2σβ,data,i

. (2.26)

The total likelihood score is sum of each of these components:

ln(L) = ln(LEMD) + ln(LCost) + ln(LDisp) (2.27)

The details of how each component is calculated can be found in Shelton et al. (2021). Only

the locations of the baryonic bodies contribute to the calculation of the likelihood score,

because we are only able to observe the stars in the tidal stream.

Due to the chaotic behavior of N-body systems, the slightest deviation in the progenitor

parameters (or the random seed) can shift the core of our progenitor further ahead or behind

in the stream, drastically affecting the likelihood. To mitigate this chaos, we check the

likelihood score over a range of evolution times to “match” the cores of the simulated stream

to that of the data. Once the simulation reaches 98% of the evolution time, the code

calculates the likelihood at each timestep and keeps the snapshot with the best likelihood.

This comparison continues until the simulation time reaches 102% of the evolution time.

The best likelihood in this range of forward evolution times is returned as the likelihood for

the given parameter set.
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2.3 Optimization Procedure

Exploring our parameter space requires hundreds of thousands of likelihood calcu-

lations, each requiring an N-body simulation. Our N-body simulations on average take 15

minutes to compute on a single processor; it would take several years to run this optimization

on an average laptop. Therefore, computing these optimized parameters within a reasonable

time-frame demands the use of a much more sophisticated computer network.

MilkyWay@home is a collection of roughly 26,000 volunteered computers connected

by the Berkeley Open Infrastructure for Network Computing (BOINC), operating at 1.5

PetaFLOPS of combined computing power. MilkyWay@home uses this massive computing

power in conjunction with the Time Asynchronous Optimization (TAO; Desell et al. 2009)

package to optimize the parameters which define the size and shape of the progenitor dwarf

galaxy. This section explains the differential evolution genetic algorithm we use to optimize

our progenitor parameters and describes the parameter space we explore.

2.3.1 Differential Evolution Genetic Algorithm

MilkyWay@home starts an optimization by first generating a random population of 50

parameter sets, each containing the five parameters described in Section 2.2.1, on the main

server. For each parameter set in the population, MilkyWay@home sends out a package con-

taining an N-body executable, a Lua file containing important settings for the simulation, the

aforementioned parameter set, and a comparison histogram containing the real stellar data

to several of the 26,000 volunteered computers. The volunteered computer runs the N-body

executable with the chosen parameters and generates a simulated tidal stream, calculates

the density of bodies across the stream, and logs the information into a histogram. The

newly generated histogram is compared to the data histogram, and the computer generates

a likelihood score based on how well the two histograms match. This score and its associated

parameter set are sent back to the main server.

After calculating the likelihood scores of the initial population, we employ a differential

evolution algorithm to generate new parameter sets to test. For each member of our pop-

ulation x , we select three other random distinct members (a , b, and c) to act as “genetic

donors” to the new parameter set y . We then generate a random integer p between 1 and n,

where n is the number of elements in our parameter set (in this case 5). Also, we generate

a random number ri between 0 and 1 for each element xi. Given these numbers, the ith
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element yi of the new parameter set is thus defined as:

yi =

ai + F (bi − ci) ri < CR ∨ i = p

xi otherwise
. (2.28)

where CR is the crossover rate (set to 0.9) and F is the differential weight (set to 0.8).

These newly created sets are then sent to our volunteers to calculate a likelihood score.

Once a parameter set returns with its likelihood score, it is compared against the rest of the

population. Only the parameter sets with the highest likelihood scores are kept to act as

“genetic donors” for new parameter sets.

Ultimately, the population of parameter sets converges to the phase space point with

the highest likelihood, and thus, to a set of parameters that most accurately matches the

stellar data. We say an optimization has converged when all members of the population are

identical. MilkyWay@home can take between two to four weeks to converge.

2.3.2 Timestep Cut in Parameter Space

Although Shelton et al. (2021) gives us a realistic physical basis for our choice of

timestep, there are still regions of our parameter space which could lead to unwieldy run

times. In particular, these occur when our generated dwarf progenitor is extraordinarily

dense. MilkyWay@home searches over a 5-dimensional parameter space for the parameters

with the highest likelihood (search range defined in Table 2.5). However, it would not be

wise to explore the full 5D box as the corners of our parameter space with high mass and

low radius would produce exceedingly dense progenitors which could take up to 80 days

to run. Regions of parameter space that would require more than 1.5 million timesteps in

the simulation are excluded from our optimization. Figure 2.10 shows the excised region of

parameter space.

Table 2.5: The search ranges for our optimizations against the stellar data.

τevolve (Gyrs) RB (kpc) ξR= RB

RB+RD
MB (SM) ξM= MB

MB+MD

[2.0 - 6.0] [0.01 - 0.50] [0.1 - 0.6] [0.1 - 100.0] [0.001 - 0.95]
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Figure 2.10: Plots illustrating the fraction of our 5D parameter space searched
as a function of the baryonic Plummer scale radius (aB) and the
baryonic progenitor mass (MB). The color of a pixel shows the
fraction of the phase space tested for a given (aB,MB). Redder
regions in these plots are where a larger percentage of our
parameter space is removed. Note that areas where the density of
the progenitor galaxy is higher are where we lose most of our
phase space. Of the total phase space, 8.92% of our parameter
space is cut out.

Placing a non-linear cut on our phase space like this does remove the ability for Milky-

Way@home to fit the densest ultra-compact dwarf (UCD) galaxies. For example, simulating

a dwarf galaxy like M60-UCD1, one of the densest dwarf galaxies ever measured (Strader

et al. 2013), would require roughly 17 million timesteps to evolve the progenitor through our

gravitational well for 6.0 gigayears. Fortunately, our fits to the OCS do not suggest a UCD

progenitor, but rather a dwarf galaxy with a similar radius but over 100 times less mass.

2.4 Results

We ran six optimizations over our five dwarf parameters using MilkyWay@home’s dis-

tributed supercomputer. The raw converged results for each optimization run can be found

in Table 2.6. The likelihood score calculated for each run can be found in Table 2.7.
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Table 2.6: Fitted parameters from MilkyWay@home optimizations. Errors
were calculated using Hessian method as described in Section 2.1.4.
Note that the primary source of error is from the navigation of the
likelihood surface as measured by the differences between individual
runs, and not the statistical error calculated from the Hessian.

Run τevolve (Gyrs) RB (kpc) ξR MB (SM) ξM
1 3.6354±0.0004 0.2560±0.0010 0.3455±0.0014 1.017±0.011 0.0413±0.0005
2 3.6345±0.0004 0.2327±0.0005 0.2543±0.0010 1.146±0.007 0.0179±0.0003
3 3.6333±0.0004 0.1812±0.0007 0.1828±0.0009 1.223±0.020 0.0126±0.0003
4 5.3921±0.0004 0.2060±0.0010 0.1315±0.0015 1.635±0.017 0.1445±0.0006
5 3.6334±0.0003 0.1842±0.0007 0.1820±0.0010 1.251±0.014 0.0119±0.0002
6 5.3956±0.0004 0.1987±0.0004 0.1305±0.0021 1.682±0.009 0.1507±0.0016

Table 2.7: The likelihood scores calculated for each optimized run. Likelihoods
closer to 0 imply a better fit.

Run ln(L)
1 -9.604550
2 -8.809277
3 -7.726065
4 -18.033154
5 -7.997704
6 -18.982624

From these results, we see that the differential evolution genetic algorithm we used

did not consistently converge to the same parameter set. We find that for Runs 4 and

6, the algorithm reached a local maximum whose parameters suggest a lower dark matter

concentration. Runs 3 and 5 have the highest likelihood scores and seem to reflect the true

maximum in the likelihood surface, whereas Runs 1 and 2 got close to this solution but got

failed to optimize further.

Table 2.8 gives the same optimized dwarf parameters as in Table 2.6, but measured in

physical units. We also directly compare our data histogram against the optimized run with

the best likelihood in Table 2.9.
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Table 2.8: Radial profile and mass calculated from fitted parameters. The
primary source of error is from the navigation of the likelihood
surface as measured by the differences between individual runs, and
not the statistical error calculated from the Hessian.

Run τevolve (Gyrs) RB (kpc) RD (kpc) MB (105M⊙) MD (107M⊙)
1 3.6354±0.0004 0.2560±0.0010 0.485±0.004 2.26±0.02 0.524±0.009
2 3.6345±0.0004 0.2327±0.0005 0.682±0.004 2.55±0.02 1.39±0.02
3 3.6333±0.0004 0.1812±0.0007 0.810±0.006 2.72±0.04 2.13±0.05
4 5.3921±0.0004 0.2060±0.0010 1.361±0.019 3.63±0.04 0.215±0.002
5 3.6334±0.0003 0.1842±0.0007 0.828±0.006 2.78±0.03 2.30±0.05
6 5.3956±0.0004 0.1987±0.0004 1.323±0.024 3.74±0.02 0.211±0.003

2.4.1 Using Marginalized Parameter Sweeps to Estimate Error

We use the Hessian method as described in Section 2.1.4 to calculate the errors in

each of our fitted parameters. However, to accurately calculate these errors, we need our

step size to already be comparable to the errors we wish to calculate. To accomplish this,

we perform a marginalized 1-dimensional parameter sweep along each dwarf parameter to

visualize an adequate step size. In this section, we describe the methods by which we quickly

and efficiently calculate marginalized likelihood scores for these parameter sweeps.

Calculating a marginalized likelihood score from N-body simulations is difficult for two

reasons. First, the marginalization computation must be completed within the likelihood

space, rather than the log(likelihood) space we represent in our version of the likelihood

score. This requires us to numerically compute integrals over regions of our parameter

space where the likelihood is several orders of magnitude lower than machine precision.

Second, any marginalization method we implement over our likelihood space is inherently

computationally expensive, requiring us to calculate a complicated 4-dimensional integral

over a rough likelihood surface. Calculating one likelihood score from a set of parameters

requires an N-body simulation. If we were to use a crude 3-point Gaussian quadrature

method to calculate each integral, that would require us to run 81 N-body simulations to

calculate the marginalized likelihood for one point of our parameter sweep. Assuming we

use about 30 points for our parameter sweep, that brings the total number of simulations to

2,430, requiring one to three months for each parameter sweep.

To address the first issue, we define a special convention for adding together likelihood

scores. Given two likelihood scores ln(L>) and ln(L<) (where L> > L<), we define their

sum ln(Lsum) to follow the following equation:
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Table 2.9: Histograms of stellar density and Beta dispersion σB along the
stream. Left histogram generated from data. Right histogram shows
best simulation fit. The number of counts N in each bin is
normalized for the purposes of the Earth Mover Distance calculation
in our likelihood score. δN and δσB

are the errors in the normalized
counts and the Beta dispersion respectively.

DATA SIMULATION (RUN 3)
Λ N δN σB δσB

N δN σB δσB

-31.5 0.0316 0.0072 ... ... 0.0264 0.0022 1.543 0.130
-28.5 0.0304 0.0078 1.003 0.323 0.0261 0.0021 1.220 0.104
-25.5 0.0186 0.0081 ... ... 0.0284 0.0022 1.315 0.106
-22.5 0.0114 0.0089 ... ... 0.0301 0.0023 1.184 0.092
-19.5 0.0266 0.0091 1.001 0.208 0.0273 0.0022 1.138 0.094
-16.5 0.0261 0.0095 ... ... 0.0278 0.0022 1.068 0.087
-13.5 0.0433 0.0101 ... ... 0.0300 0.0023 1.071 0.084
-10.5 0.0382 0.0105 1.076 0.218 0.0284 0.0022 0.994 0.080
-7.5 0.0172 0.0109 ... ... 0.0216 0.0020 0.969 0.089
-4.5 0.0201 0.0117 ... ... 0.0216 0.0020 0.924 0.085
-1.5 0.0224 0.0127 0.612 0.146 0.0223 0.0020 0.716 0.066
1.5 0.0302 0.0127 ... ... 0.0207 0.0019 0.829 0.077
4.5 0.0227 0.0118 ... ... 0.0190 0.0018 0.764 0.075
7.5 0.0297 0.0108 0.791 0.308 0.0209 0.0019 0.656 0.062
10.5 0.0011 0.0110 ... ... 0.0190 0.0018 0.707 0.070
13.5 0.0261 0.0108 ... ... 0.0220 0.0020 0.502 0.046
16.5 0.0277 0.0109 0.947 0.257 0.0262 0.0022 0.702 0.058
19.5 0.0262 0.0113 ... ... 0.0287 0.0023 0.666 0.053
22.5 0.0325 0.0139 ... ... 0.0388 0.0026 0.610 0.038
25.5 0.0655 0.0146 0.869 0.195 0.0546 0.0031 0.660 0.038
28.5 0.0618 0.0140 ... ... 0.0679 0.0035 0.561 0.029
31.5 0.0586 0.0141 ... ... 0.0745 0.0036 0.710 0.035
34.5 0.0925 0.0145 2.606 1.217 0.0784 0.0037 0.771 0.037
37.5 0.0870 0.0149 ... ... 0.0800 0.0038 0.784 0.037
40.5 0.0655 0.0144 ... ... 0.0598 0.0033 0.887 0.049
43.5 0.0240 0.0152 1.325 0.311 0.0527 0.0031 0.863 0.051
46.5 0.0629 0.0150 ... ... 0.0468 0.0029 0.660 0.042

eln(Lsum) = eln(L>) + eln(L<). (2.29)

Doing some simple math, we can rewrite this equation as:

ln(Lsum) = ln(L>) + ln
(
1 + eln(L<)−ln(L>)

)
(2.30)
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Overall, larger likelihood scores dominate the smaller ones. In a double precision compu-

tation, if the two likelihood scores differ by more than 64, the smaller likelihood score is

completely ignored in the calculation. Therefore, given a list of likelihoods to add, it is most

prudent to add together the smaller likelihood scores first.

To calculate the marginalized likelihood score ln(L̃), we use a Monte Carlo integration

method using N random points in our parameter space of volume V . To determine the

minimum number of random points we need for our calculation, we need to know how N

affects the error in ln(L̃). Given a list of likelihoods {L}, the marginalized likelihood L̃
calculated using Monte Carlo is given by the following equation:

L̃ =
V

N

∑
i

Li = V µL, (2.31)

where µL is the average of L. From this, it is clear that the main source of error in this

equation comes from the calculation of µL, which is simply the error in the mean:

δL̃ = V
σL√
N
, (2.32)

where σL is the standard deviation of the population that L was pulled from. Performing

basic error propagation, we find the error in the marginalized likelihood score to be:

δln(L̃) =
δL̃

L̃
=

σL

µL
√
N
. (2.33)

It can then be shown that:

δln(L̃) =
1√

N − 1

√
N

∑
L2

i

(
∑

Li)
2 − 1. (2.34)

Equation 2.34 is what we use in Figure 2.11 to determine the errors in our parameter

sweeps (shaded in blue). However, given this equation, we can generate a rough estimate for

what this error looks like on average. We can reorder our list {L} in descending order, where

L0 is the highest likelihood and L1 is the second highest likelihood. Since we anticipate that

each pair of adjacent entries in the reordered list to differs by tens of orders of magnitude,

we can make the following approximations:
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∑
i

Li ≈ L0 + L1 = L0 (1 + k) , 0 < k ≤ 1, (2.35)

∑
i

L2
i ≈ L2

0 + L2
1 = L2

0

(
1 + k2

)
, 0 < k ≤ 1, (2.36)

where k = p1/p0. We can make this approximation since we expect only the largest few

likelihoods in our list to impact the summations. Substituting these quantities into Equation

2.34 gives us:

δln(L̃) ≈
1√

N − 1

√
N

(1 + k2)

(1 + k)2
− 1 =

√
1 + k2 − 2k/(N − 1)

(1 + k)2
. (2.37)

Taking the limit where k approaches 0, we find that δL̃ takes the form:

δln(L̃) ≈
√

1 − 2k

N − 1
≈ 1. (2.38)

Surprisingly, we find that the effect of N on δln(L̃) is incredibly muted in our likelihood space.

In fact, looking at the parameter sweeps in Figure 2.11, we find that the errors associated

with each point are extremely close to 1. It is therefore unreasonable to use a bound in δln(L̃)

to select a minimum value for N .

Instead, we should set N to be the minimum number of measurements by which the

unbiased value of σp can be most efficiently estimated to a set percentage. To determine σp to

within 1%, the unbiased variance σ2
p must be determined to within 2%. Also, the relationship

between σ2
p and the sample variance s2p can be estimated using Bessel’s correction:

σ2
p

s2p
=

N

N − 1
. (2.39)

Therefore, to know σ2
p to within 2%, we measure the likelihoods from 50 random points for

each Monte Carlo approximation to calculate our parameter sweeps.

The likelihood surfaces we observe are not smooth, but we still see an overall dip

near the optimal parameters. A Gaussian peak in the likelihood surface translates to a

parabola in the log(likelihood) parameter sweeps. Using the apparent width of these peaks,

we determine the appropriate step size to use when calculating the Hessian for the purposes
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Figure 2.11: 1-dimensional marginalized parameter sweeps over each dwarf
parameter. The blue line shows the negative of the likelihood
calculated at each dwarf parameter value while the red line
indicates the best fitted value for that parameter (from Run 3).
The blue shaded area shows the error in our marginalized
likelihood score.
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of error analysis.

2.4.2 Full Result

After finding the converged values for each of our optimizations, we reran the simula-

tions using each best fit parameter set to check that the generated simulated tidal stream

matched the data, as shown in Figures 2.12 and 2.13. In all optimizations, we see a general

trend where the B dispersion is relatively well fit for Λ < 10◦, but poorly fit for Λ > 10◦,

especially near the core. This is likely due to the larger errors in the B dispersion associated

with the region near the core in the DEC data at higher ΛOCS. Most of the optimizations

(Runs 2, 3 and 5) converged to similar tidal debris that closely resembles the OCS. Runs

1, 4, and 6 had a poorer likelihood score compared to the other optimizations, and we see

that the distribution of bodies near its core is wider across ΛOCS than the data. Due to the

generally poor fit of these runs, we exclude them from our analysis of the OCS progenitor.

It should be noted that none of these optimizations reproduce the gap (σ = 1.06) in

the tidal stream at Λ = 10.5◦. This is not only because our data can barely resolve this gap,

but also because such a gap would only appear as a result of substructures within the Milky

Way’s dark matter halo (Koposov et al. 2019), which is not accounted for in our current halo

potential.

Taking the average of the 3 best fitted parameters (Runs 2, 3, and 5), we estimate the

following physical properties of the OCS progenitor dwarf galaxy:

τevolve = 3.6337 ± 0.0004(stdev.) ± 0.0004(Hess.)Gyrs (2.40)

RB = 0.1994 ± 0.0167(stdev.) ± 0.0006(Hess.)kpc (2.41)

RD = 0.773 ± 0.046(stdev.) ± 0.005(Hess.)kpc (2.42)

MB =
(
2.68 ± 0.07(stdev.) ± 0.03(Hess.)

)
× 105M⊙ (2.43)

MD =
(
1.94 ± 0.28(stdev.) ± 0.04(Hess.)

)
× 107M⊙ (2.44)

Mtotal =
(
1.97 ± 0.28(stdev.) ± 0.04(Hess.)

)
× 107M⊙ (2.45)

where the first error is the standard deviation of the mean and the second error is the

propagated error from each individual optimization’s Hessian error. We see that our largest

source of error comes from the optimization process rather than the curvature of the like-

lihood surface. So, we only propagate those errors. From these parameters we calculate a
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fitted mass-to-light ratio of γ = 73.5 ± 10.6.

Note that these results and errors are derived under the assumption of a perfect Milky

Way potential, orbit, and functional form of the dwarf galaxy and do not include systematic

errors due to these assumptions.

Figure 2.12: End state histograms showing normalized body counts over ΛOCS.
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Figure 2.13: End state histograms showing B dispersion over ΛOCS.
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2.5 Discussion

2.5.1 An Extremely Low-Mass Diffuse Progenitor

Our estimated mass for the OCS’s progenitor is not consistent with the masses of

ultrafaint dwarf galaxies measured from the dispersion of the line-of-sight velocities, which

assume spherical symmetry and virial equilibrium. To illustrate this point more clearly, let

us use these parameters to calculate the total mass within 300 pc of the progenitor’s center.

Within this radius, we calculate (1.6±0.1)×105M⊙ of baryonic matter and (9.2±2.2)×105M⊙

of dark matter. In total, we find a mass of (1.1±0.2)×106M⊙ within 300 pc of the progenitor’s

center, roughly one order of magnitude smaller than what is claimed possible in Strigari et al.

(2008). However, these results are also about one order of magnitude larger than the mass

estimated in Newberg et al. (2010), who estimated the total OCS progenitor mass from N-

body simulations to be 2.5×106M⊙. We note that this mass calculation was done under the

assumption that the dark matter followed a Plummer profile. However, we note that 300 pc

is very close to the half-light radius of the best fit dwarf progenitor, and Shelton et al. (2021)

showed that our algorithm was most sensitive to the mass within the half-light radius.

2.5.2 The Location of the Remnant Progenitor

We use our fitted simulations to estimate the current location of the OCS’s progenitor.

Note that there is a peak in the star counts of both the data and the stream simulation

around Λ ∼ 35◦ in Figure 2.12. We know this point of high stellar density must be the

location of the progenitor remnant because there is no other reason for stars to pile up at

this position, so far from apogalacticon. In this section we will determine the position of the

progenitor remnant and show that it is no longer gravitationally bound.

For each optimization, we translate the positions of all the bodies into spherical coor-

dinates (r, θ, ϕ), where the origin is the Galactic Center and the z-axis is perpendicular to

the Galactic Plane. We bin the baryonic (stellar) bodies in the polar (θ) and azimuthal (ϕ)

angles and select the bin with the highest density of bodies. Using the bodies in the selected

bin, we calculate the average Galactocentric distance (r) and its standard deviation. To im-

prove the calculation, we remove all bodies with distances more than 2.5 standard deviations

away from the mean and recalculate the average, a process known as sigma-clipping. We

perform this sigma-clipping 50 times for the sake of being thorough. After calculating the

3D point in space with the highest density of baryonic bodies, we translate it into Galactic
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and Equatorial coordinates. The progenitor position of each run is shown in Table 2.10.

Table 2.10: The current sky position of the progenitor in both Galactic and
Equatorial coordinates calculated from each optimization.

Run l (◦) b (◦) α (◦) δ (◦)
2 264.0 44.4 165.7 -10.1
3 270.4 40.5 167.7 -15.9
5 260.4 46.0 164.6 -7.3

Our simulations predict that the remnant progenitor core is expected to be at around (l, b) =

((264.9±2.9)◦, ((43.6±2.8)◦), or (α, δ) = ((166.0±0.9)◦, (−11.1±2.5)◦). This is close to the

sky position where Grillmair et al. (2015) detected the OCS’s possible missing progenitor,

(α, δ) ≈ (167◦,−14◦).

We next check whether or not the simulated remnant progenitor is still gravitationally

bound. For each optimization, we calculate the total kinetic energy of the remnant and

compare it to its gravitational potential energy. We select bodies that are within 0.5 kpc of

the progenitor’s center since that distance is roughly the cylindrical radius of our simulated

stream (see Figure 2.14). We transform our bodies into the center-of-momentum reference

frame and add together the kinetic energies (EK = 1
2

∑N
i mivi

2) of all the bodies. Similarly,

we add together the gravitational energies from each pair of bodies (EP =
∑N

i

∑N
i<j

Gmimj

|ri−rj | ).

We record the energies we calculate for each optimization in Table 2.11.

Table 2.11: The kinetic and gravitational potential energies of the simulated
remnant progenitor in each optimization. Note that the kinetic
energy is much larger than the gravitational potential energy,
indicating that the progenitor is no longer gravitationally bound.

Run EK (SMkpc2Gyr−2) EP (SMkpc2Gyr−2)
2 5.977 -0.096
3 7.587 -0.092
5 5.751 -0.093

We find that the simulated remnant progenitor has a kinetic energy of (6.4±0.6) SM kpc2

Gyr−2 and a gravitational potential energy of -(0.094±0.001) SM kpc2 Gyr−2, and is thus
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gravitationally unbound. Looking at the stream directly in Figure 2.14 makes this readily

apparent.

Figure 2.14: Close-up view of simulated progenitor remnant (Run 3). The
remnant has been fully disrupted and the progenitor’s original
structure cannot be easily observed.

2.5.3 The Distribution of Dark Matter Along the Stream

The tidal debris we observe in our simulations reveals some interesting aspects of the

distribution of baryonic and dark matter in the stellar stream. We analyze the distribution

of matter within the tails of the simulated OCS. Figure 2.15 shows that the tails of the OCS

are thicker than the central region nearer to the progenitor remnant. There are two possible

contributions to this thickening: either the tails are naturally fanning out at apogalacticon

due to the symplectic (phase space area preserving) property of gravitational systems, or
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material with a higher velocity dispersion in the progenitor is being tidally stripped first,

populating the regions of the stream further from the core.

Figure 2.15: Tidal stream produced by Run 3 viewed from different angles. We
see that the tidal tails of the stream are thicker near
apogalacticon. The green star is the Galactic Center (GC) and
the cyan star is the location of the OCS’s progenitor dwarf galaxy.

We can test this by looking at the simulated tidal stream generated using Run3, our

best run, when the core is at apogalacticon. If a high velocity dispersion has a stronger

impact on the thickness of the tails than the fanning at apogalacticon, then the tails should

maintain their thickness even when they are not at apogalacticon. However, as can be clearly

seen in Figure 2.16, while the core is at apogalacticon it bears a similar thickness to the tails

in the fully evolved stream. Also, the tails of the stream in the core-apogalacticon state share
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a similar thickness to the core in the final state. This indicates that the thickening of the

tails in the final state is mostly caused by the natural fanning that occurs at apogalacticon.

Figure 2.16: The final state stream (left) compared to the stream while its
progenitor is at apogalacticon (right). The thickness of the stream
at apogalacticon is comparable in both images regardless of where
the progenitor is.

In addition to being thicker than the core, the tails also possess a higher mass-to-light

ratio. We see this in Figure 2.17, which maps out the density of baryons and dark matter

along ΛOCS. While the core of the OCS has a relatively high dark matter density, it is still

not as high as in its tails, where the mass-to-light ratio jumps to as high as 142 in Run 3.

Due to its high dark matter concentration and low baryonic contamination, the tails of the

OCS might serve as a better candidate for indirect dark matter detection than the central

core.

2.5.4 The Effect of the LMC on the OCS

When creating our data histogram, we excluded the southern tail of the OCS because

our current N-body simulations do not account for the gravitational influence of the LMC.

While the OCS’s northern tail is not greatly influenced by the presence of the LMC, its

southern tail exhibits peculiar perturbations in its stellar velocities which cannot be ex-

plained by a static Milky Way potential or a low mass LMC (Erkal et al. 2019). While this
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Figure 2.17: Distribution of baryons and dark matter in Run 3. The tails
clearly have a much higher mass-to-light ratio at points that are
farther away from the core.

dissertation does not fit data from the southern tail, we do plan on including the tail and

the gravitational effects of the LMC in a future MilkyWay@home paper.

2.5.5 Sources of Systematic Error

While we measured the OCS progenitor properties without the assumption of dynami-

cal equilibrium, our measurement still relies on a few key presuppositions. First, we assume

the Milky Way has a static, axisymmetric Galactic potential for the entirety of the simu-

lation. There currently exists no mechanism in our N-body simulations for our progenitor

to perturb the Milky Way to give rise to second-order effects. We do not include any time-

dependence in our Milky Way potential. We do not take into account other gravitating

systems which could interact with the OCS, such as the LMC or other Milky Way satellites.

Adding the LMC to our simulations would not only further perturb the stream, but also

induce a reflex motion in the entirety of the Milky Way Galaxy, forcing the dwarf galaxy

progenitor to fall into an accelerating potential. It has also been recently discovered that

most of the mass in the inner disk of the Milky Way is located in its fast rotating bar (Portail

et al. 2017), which is also not included in our Galactic model.

Second, we fix the orbit of our simulated OCS throughout each of our optimizations to

the values determined in Newberg et al. (2010). Since the orbit is fit to the northern (leading)

tail of the OCS, which should be at lower energy than the orbit of the dwarf galaxy itself, we

expect the orbit is not exact. We have not explored how the orbit affects the fit properties of
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the dwarf galaxy progenitor. However, we are only using the stellar distributions along and

across the stream, which are not thought to be strongly affected by small differences in the

orbit, to constrain the stream. Additionally, the stream created in our best fit simulation is

similar to the stream observed, which gives us some confidence that our orbit and progenitor

properties are reasonable.

Third, we assume that the OCS progenitor has the form of a two component Plummer

sphere. We used a Plummer profile for our progenitor because it is a simple model with an

analytic energy distribution function. However, it is probably not the best (and certainly

not a perfect) model, particularly for the dark matter halo. We are unsure whether using

a different profile, such as a Hernquist or Navarro-Frenk-White profile, would significantly

affect the optimization results.

Finally, there is the measurement of baryonic mass in the OCS. As discussed in Section

2.1.4.1, using the redder NGC 5053 to estimate the mass of the bluer OCS overestimates the

mass per turnoff star. From our analysis, we find that the stellar mass could be reduced by a

factor of 4 due to inaccuracies in our calculation of the stellar mass per turnoff. This would

affect the mass to light ratio, but would not significantly change the total mass within 300

pc of the center of the progenitor.



CHAPTER 3

ADDING THE EFFECTS OF THE LARGE MAGELLANIC

CLOUD

Since Erkal et al. (2019) showed that the LMC only seemed to have an impact on the

Southern Tail of the OCS, we originally did not include its effects since we were only fitting

the Northern Tail and the progenitor core. However, in order for us to now measure how

much the LMC impacts our full fit, it is now necessary for us to implement a LMC within

our N-body code. This chapter details all of the major changes we made to accommodate

the inclusion of this relatively massive satellite galaxy.

3.1 Modeling the LMC

We model the LMC as a statically defined Plummer sphere (Equation 2.21) that falls

into the Milky Way over the course of the simulation. We set the final LMC position and

velocity in accordance with Erkal et al. (2019) at x = (−1.1,−41.1,−27.9) kpc and v =

(−57,−226, 221) kpc Gyr−1, respectively, in right-handed Galactic Cartesian coordinates.

While our code performs the reverse orbit calculation for the progenitor dwarf galaxy, it

simultaneously calculates the initial position and velocity of the LMC. We allow the dwarf

galaxy to feel the gravitational influence of the LMC, but we have the LMC ignore the

gravitational impact of the dwarf due to its much smaller mass1.

One thing that particularly complicates this implementation is that we are anticipating

that the LMC has a mass on the order of 10% of the Milky Way. This means we would expect

the LMC to exert a non-negligible gravitational acceleration on the Milky Way. Since our

simulations are performed with the Galactic Center as the origin, introducing an LMC places

our calculations within a non-inertial reference frame. To account for this shift in our Velocity

Verlet integrations (Verlet 1967), we subtract the acceleration on the Milky Way’s center by

the LMC from every acceleration in the timestep:

a′(t) = a(t) − aMW(t). (3.1)

1It should be noted that within this analysis, to reproduce the fits in Mendelsohn et al. (2022), we set
the LMC mass to zero. Regardless, we are still implementing this code to identify how adding mass to the
LMC would impact such a fit.

44
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3.2 Dynamical Friction

Since we are modeling the LMC as a large static potential falling into a static Milky

Way, the gravitational drag we would expect to see between live bodies does not appear

within our simulation. Therefore, to approximate this process, we use Chandrasekhar’s

formula (Chandrasekhar 1943) to describe the dynamical friction acting on the LMC:

Fdyn = −16π2 ln(Λ)ms(MLMC + ms)
vLMC

v3LMC

∫ vLMC

0

v2f(x, v)dv, (3.2)

where ln(Λ) is the Coulomb Logarithm (Λ = 1.6), ms is the average mass of halo stars,

MLMC is the mass of the LMC, vLMC is the velocity of the LMC, and f(x, v) is the number

density distribution of halo stars.

The hardest calculation required in this formula is the distribution function f(x, v).

Since MilkyWay@home has several halos to select from, properly implementing dynamical

friction would require us to calculate this distribution function for an arbitrary halo density,

a notoriously difficult calculation. It is therefore necessary for us to find ways to approximate

this value. The first assumption we make is that the distribution can be locally approximated

at x as a uniform density field with a Maxwellian velocity distribution:

f(x, v) =
n(x)

(2πσ2(x))3/2
e
− v2

2σ2(x) , (3.3)

where n(x) is the number density at x and σ2(x) is the 1-dimensional velocity dispersion of

halo stars at x. Plugging this distribution into Chandrasekhar’s formula yields:

Fdyn = −4π2 ln(Λ)ρhalo(x)MLMC

v3LMC

[
erf

(
vLMC

σ(x)
√

2

)
−
√

2

π

vLMC

σ(x)
e
− v2LMC

2σ2(x)

]
vLMC, (3.4)

where ρhalo(x) is the mass density of the halo.

This simplification alone is not enough as we still do not know the velocity dispersion

σ2(x). To approximate this quantity we look at the Spherical Jeans Equation:

∂(ρhalo(r)σ2
r)

∂r
+

2ρhalo(r)

r

(
σ2
r − σ2

θ

)
+ ρhalo(r)

dΦhalo

dr
= 0, (3.5)

where Φhalo is the gravitational potential of the Milky Way halo. Assuming isotropy (σ2
r = σ2

θ)
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simplifies our equation to:

∂(ρhalo(r)σ2
r)

∂r
= −ρhalo(r)

dΦhalo

dr
. (3.6)

Since ahalo = −∇Φhalo, it is easy to show:

∂(ρhalo(r)σ2
r)

∂r
= ρhalo(r)(ahalo · r̂)dr. (3.7)

We then integrate the above equation from radius where our LMC resides (rLMC) to infinity:

ρhalo(r)σ2
r

∣∣
r=∞ − ρhalo(r)σ2

r

∣∣
r=rLMC

=

∫ ∞

rLMC

ρhalo(r)(ahalo · r̂)dr. (3.8)

As we look at larger radii, the density of our halo naturally drops to zero. In addition, for a

gravitationally bound body to exist at larger radii, the velocity of the body must approach

zero, implying that its velocity dispersion also approaches zero. Therefore, we find that

we can approximate the 1-dimensional velocity dispersion of the halo at rLMC using the

following integral:

σ2(rLMC) = − 1

ρhalo(rLMC)

∫ ∞

rLMC

ρhalo(r)(ahalo(r) · r̂)dr. (3.9)

3.3 Orbit Fitting

Adding an LMC to the Milky Way system modifies the gravitational potential to such

a degree that the orbit fit in Newberg et al. (2010) would no longer be valid, which would

require us to calculate a new orbit before optimizing our dwarf parameters. However, as

stated in Chapter 2, there could exist a coupling between the orbital and dwarf param-

eters. Therefore, it would be in our best interest to try and fit both sets of parameters

simultaneously.

To accomplish this, we add three new components to the likelihood score calculation:

the VLOS Component, the ⟨B⟩ Component, and the Distance Component. The VLOS

Component performs a bin-by-bin comparison the average line-of-sight velocities between
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the data and simulation histograms, outputting a χ2 metric:

ln(LV LOS) = −1

2

Nbins∑
i

(µV LOS,data,i − µV LOS,sim,i)
2

σ2
V LOS,data,i + σ2

V LOS,sim,i

. (3.10)

The ⟨B⟩ Component performs a similar calculation using the average B in each bin:

ln(L⟨B⟩) = −1

2

Nbins∑
i

(µB,data,i − µB,sim,i)
2

σ2
B,data,i + σ2

B,sim,i

, (3.11)

and the Distance Component looks at the average Galactocentric distance R in each bin:

ln(LR) = −1

2

Nbins∑
i

(µR,data,i − µR,sim,i)
2

σ2
R,data,i + σ2

R,sim,i

. (3.12)

It should be noted in this analysis that our likelihood score of interest does not use these addi-

tional components, but we anticipate implementing these calculations in future fits involving

the LMC.



CHAPTER 4

AUTOMATIC DIFFERENTIATION

MilkyWay@home (MW@home) is a distributed supercomputer tasked with measuring the

amount of dark matter within the progenitor dwarf galaxy by optimizing the results of N-

body simulations mimicking its tidal disruption. It accomplishes this by using a differential

evolution genetic algorithm to find which progenitor properties best fit an observable stream

in the sky. Given a set of parameters and an input stream, the N-body simulation generates

a simulated tidal stream from those parameters and compares it to the input stream by

calculating a likelihood score. The differential evolution algorithm collects these likelihood

scores and uses them to find the parameter set that best fits the data.

These fitted parameters, however, are heavily dependent on the accuracy of the model

which simulates them. The uncertainties in Galactic parameters (disk thickness, halo mass,

etc.) as well as the limited criteria used in the likelihood calculation must provide an upper

bound on how accurately the parameters of the dwarf progenitor can be measured. To

understand these properties, it is necessary understand the curvature and texture of the

likelihood surface we are optimizing on. Therefore, we require accurate derivative information

of the likelihood surface with regards to these Galactic parameters.

In Section 4.1, we derive the sensitivity matrix which we then use to determine how

much a local maximum in our likelihood space would change given a shift in the model

parameters. In Section 4.2, we explain why using a numerical approach to calculating the

derivatives necessary for our sensitivity matrix is computationally difficult, explaining the

need for the automatic differentiation process described in Section 4.3. Finally, in Section 4.4,

we explore which processes in our N-Body simulation automatic differentiation fail to propa-

gate derivative information, and the subsections within mathematically derive the functions

we implement to recover said information.

4.1 Derivation of the Sensitivity Matrix

Let p be the vector of all parameters optimized through differential evolution, and let

x be the vector of all other parameters kept at a constant value (disk thickness, halo mass,

etc.). Also, let L(x,p) be the likelihood score evaluated for some x and p. We define pc(x)

as the location of a local maximum of L(x,p) in p-space for a given x. Assuming L(x,p)

48
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is twice-differentiable in p, we can approximate L(x,p) for when p is sufficiently close to

pc(x):

L(x,p) =
∑
i

∑
j

aij(x)(pi − pc(x)i)(pj − pc(x)j) + C(x), (4.1)

where aij(x) and C(x) are some functions purely dependent on x2. Taking the derivative

with respect to one of the optimized parameters pk gives us:

∂L
∂pk

=
∑
j

[ajk(x) + akj(x)](pj − pc(x)j). (4.2)

We can also easily show that:

∂2L
∂pj∂pk

= ajk(x) + akj(x). (4.3)

Therefore,
∂L
∂pk

=

(
∂2L

∂pk∂p

)
· (p− pc(x)) , (4.4)

or more generally,

∇pL = ∇2
ppL · (p− pc(x)) , (4.5)

where ∇pL is the gradient of L(x,p) with respect to p and ∇2
ppL is the associated Hessian

matrix of L(x,p).

As a side note, Equation 4.5 has some interesting utilities. If we rearrange our terms

to solve for pc(x), we get:

pc(x) = p− [∇2
ppL]−1 · ∇pL. (4.6)

If we change p to be a guess of the optimal value pn and pc(x) to be our next guess pn+1,

then we get a formula that looks strikingly similar to the Newton-Raphson algorithm for

finding the roots of functions:

pn+1 = pn − [∇2
ppL]−1 · ∇pL, (4.7)

though in this case, we’re finding the root of the function ∇pL. If we can directly compute

the derivative and gradient of our likelihood surface, Equation 4.7 allows us to take a rough

2It should be noted that L(x,p) is actually the logarithm of the likelihood, so a quadratic form of L(x,p)
corresponds to a Gaussian form in the likelihood.
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estimate of a local maximum (provided from a differential evolution algorithm) and recur-

sively “polish” the parameter set until it most closely represents a local maximum in the

likelihood surface.

Taking the derivative of Equation 4.5 with respect to one of our non-optimized param-

eters xk on both sides yields:

∂

∂xk

∇pL =
∂

∂xk

[
∇2

ppL · (p− pc(x))
]

=

[
∂

∂xk

∇2
ppL

]
· (p− pc(x)) −∇2

ppL · ∂pc

∂xk

. (4.8)

Evaluating the expression at p = pc gives us:

∂

∂xk

∇pL
∣∣∣∣
p=pc

= − ∇2
ppL

∣∣
p=pc

· ∂pc

∂xk

. (4.9)

Reorganizing our equation and generalizing to the entire x vector finally gives us our desired

equation:

∇xpc = −
[
∇2

ppL
∣∣
p=pc

]−1

∇2
pxL

∣∣
p=pc

, (4.10)

where (
∇2

pxL
)
ij

=
∂2L

∂pi∂xj

(4.11)

and ∇xpc is the Jacobian matrix of the optimal fitted parameters, which we define as the

sensitivity matrix:

(∇xpc)ij =
∂pc(x)i
∂xj

. (4.12)

The sensitivity matrix is the derivative object consisting of all the derivatives between

the optimal parameter set (the dwarf parameters which yield the highest likelihood score)

and the non-fitted parameters. By knowing this matrix, we can determine the direction and

magnitude a fitted parameter will shift given a shift in the model parameters, giving us a

clear method by which to propagate the uncertainties in our Galactic parameters.

4.2 Shortcomings of Numerical Differentiation

The most common and straightforward method of computing the derivative of a func-

tion is to take a numerical approach, using a predetermined step size and actively computing

that function at various points (stencils) separated by integer step sizes. The simplest (and

crudest) implementation of numerical differentiation on a function f(x) uses the most basic
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limit definition of the derivative:

∂f

∂x
≃ f(x + h) − f(x)

h
, (4.13)

where h is the step size. Since the derivative is defined as the limit where h approaches

zero, it makes sense to assume that using a smaller step size would yield a more accurate

result. However, due to limited machine precision, computers become more inaccurate when

they have to divide by small numbers or subtract two large but very similar numbers, both

crucial operations for a numerical derivative computation. For one to calculate an accurate

derivative, one must therefore select a step size small enough to accurately approximate the

function as a linear curve, but also large enough to avoid reaching the machine precision of

the computer.

For simple well-known functions, finding an appropriate step size is relatively trivial.

However, for more complicated and chaotic functions (say an N-body simulation), there is

no clearly apparent choice to make without performing a deep analysis. If the function is

particularly rough and noisy, the step size must be carefully chosen such that it can resolve

the macroscopic features you wish to observe while also ignoring the noisy behavior within

the function, placing a lower limit on the size of the optimal step size. However, a step size

that is too large not only is inaccurate, but also runs the risk of leaving the features you

wish to analyze unresolved. These two opposing features of taking the numerical derivative

of a noisy function make finding an optimal step size a delicate balancing act, where larger

step sizes must be selected to avoid noise at the cost of accuracy.

One could use a higher order stencil formula to reduce the error term by additional

orders of magnitude, but this comes at the expense of requiring more stencil point calcu-

lations. This predicament is made readily apparent when trying to estimate the errors in

fitted parameters from its Hessian. To estimate the error in a fitted parameter, we use a

Cramér-Rao lower bound, which requires us to calculate and invert the Hessian matrix of

our likelihood score evaluated at the fitted parameter. Each second-order derivative in the

Hessian requires a separate specialized step size for each fitted parameter that must first

be loosely estimated beforehand using a marginalized parameter sweep in each dimension

(which also requires a tedious (N − 1)-dimensional integral to compute). The step size in

this context is less an optimally selected value and more an initial guess that will not nec-
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essarily provide an accurate Hessian. One could improve the step size recursively by using

the estimated errors as the new step size for the error estimation; however, this method is

not feasible for our N-body simulations. Using the crudest stencils, an (N × N) Hessian

requires a minimum of (2N2 + 1) N-body simulations to compute. Depending on the input

parameters, our N-body simulations on average take about 15 minutes to generate a likeli-

hood score, though some can take as long as 50 hours. Due to the inherently long run-times

required to calculate each likelihood score, optimizing the step size outside of eyeballing the

widths of parameters sweeps becomes infeasible, and thus human error invariably impacts

our derivative calculations and fitted errors.

4.3 Implementation of Automatic Differentiation

To overcome the ambiguity introduced with the step size, we sidestep the entire is-

sue by implementing automatic differentiation (Wengert 1964) to instead calculate analytic

instantaneous derivatives. Just as numerical differentiation draws its basis from the limit

definition of the derivative, automatic differentiation draws its basis from a more nuanced

property, the chain rule. In a forward accumulation method, each classical float/double

object stored in memory also stores its gradient and Hessian information. When we input

such an object into an elementary function, we use the analytic derivatives coded into the

function, the derivatives of the inputs, and chain rule arithmetic to calculate the gradient

and Hessian of the the output float/double object. Since most computer calculations consist

of a series of elementary functions, computing the derivatives of the full program boils down

to propagating derivative information from function to function and observing the last set

of derivatives stored within the output.

We define a structure within the MW@home code called “real”. An object x of type

“real” has three attributes: “value”, “gradient”, and “hessian”. The “value” attribute con-

tains a float or double precision number representing the value of x. Defining N as the

total number of parameters we wish to differentiate over, the “gradient” attribute is an

N -dimensional vector which stores the object’s propagated gradient ∇x, and the “hes-

sian” attribute is an (N × N) matrix which stores the object’s propagated Hessian ∇2x.

Within this dissertation, we use the following notation when describing a “real” object z:

z =< z,∇z,∇2z >.

In light of the discoveries regarding the nature of our likelihood surface, which will be
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discussed in greater detail in Section 5.1, we added two more attributes to our “real” objects:

“lnfactor gradient” and “lnfactor hessian”. These changes were motivated by the fact that

our derivative information grew to values that were too large to store linearly within our

“real” objects. To tackle this problem, “lnfactor gradient” and “lnfactor hessian” store the

natural logarithm of the value with the largest magnitude within the gradient and Hessian

respectively, dividing the remaining values by this largest value to more efficiently preserve

our derivative information. Therefore, when calling true gradient in our code, we need to

ensure that we multiply our gradient by the exponent of “lnfactor gradient”.

For our N-body simulations, if we wanted to calculate the Hessian of the fitted and

non-fitted parameters, we would need to differentiate over 5 dwarf progenitor parameters and

5 dwarf orbital parameters. If we also wanted to differentiate over the Galactic parameters,

we would need to include 2 parameters for the bulge, 3 for the disk, and another 3 for the

halo, bringing the total number of parameters to 18. Including a simplistic Large Magellanic

Cloud gives us another 2 parameters (radius and mass), bringing our final tally to N = 20.

This means every single “real” object would need to store a total of 231 scalars3 and require

the same number of calculations to completely update the values of one object, increasing

the run-time of our N-body simulation by such a factor. While this seems like a lot, it is still

much faster than calculating a Hessian of the same size using a numerical approach, which

would require a minimum of 801 N-body simulations. Due to the incredible computational

cost of implementing automatic differentiation, running our differential evolution algorithm

on an N-body simulation with automatic differentiation would not be feasible. Fortunately

though, the derivative information we wish to obtain is not necessary for the optimization

process, only for the error analysis of the optimal fitted parameters. Thus, we added a build

option that switches the implementation of automatic differentiation on or off.

We define special mathematical functions to take in and transform the attributes of

these “real” objects. When “real” objects x =< x,∇x,∇2x > and y =< y,∇y,∇2y > are

passed into a function z(x, y), we evaluate the resulting “real” object z =< z,∇z,∇2z >

3The actual sum of scalars from the value, gradient, and Hessian is 421, but the symmetric nature of the
Hessian allows us to reduce this number to 231 scalars.
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using the following forward accumulation formulation from Abate et al. (1997):

z =z(x, y)

∇z =
∂z

∂x
∇x +

∂z

∂y
∇y

∇2z =
∂z

∂x
∇2x +

∂z

∂y
∇2y +

∂2z

∂x2
[∇x⊗∇x] +

∂2z

∂y2
[∇y ⊗∇y] + 2

∂2z

∂x∂y
[∇x⊙∇y] ,

(4.14)

where the derivatives of z are formulas hard-coded into the newly defined function. The

first functions we define are the arithmetic operators (+,−,×,÷). Since C++ code cannot

apply these operators on objects that are incapable of being converted into floats, it is

necessary for us to explicitly code in functions that handle these operations4. We then

include the single-input basic elementary functions (ex, ln(x), sin(x), cos(x), tan(x), etc.) and

their inverses. We also code in the double-valued elementary functions (xy, logy(x), etc.) and

several other important functions (|x|,min(x, y),max(x, y), ⌊x⌋, ⌈x⌉, etc.).
Whenever we declare a constant number in our code (i.e. real variable = <some

number>;), we store it as a “real” object with a zero gradient and a zero Hessian (c =<

c, 0, 0 >). If the number we define is the ith parameter we wish to differentiate over (like

a dwarf or Galactic parameter), the we declare it the same way as a constant number, but

we set the ith entry in the object’s gradient vector to 1 (p =< p, ei, 0 >). The ith entry

within the gradient vector is thus assigned to keep track of the derivatives with respect to

that parameter as the code runs. Similarly, the ith row and column in the Hessian thus keep

track of all the derivative information for that parameter as well.

4.3.1 Testing Basic Automatic Differentiation

To ensure the derivatives propagated forward were accurate, we created a special test

within MilkyWay@home’s testing suite called autodiff test. The test checks each basic func-

tion in the mathematical library (addition, multiplication, trigonometric functions, loga-

rithms, etc.) by comparing the derivative calculated via automatic differentiation with a

derivative calculated using finite difference formulas. When testing first order derivatives,

4The functions for adding, subtracting, multiplying, and dividing “real” objects are mw add(), mw sub(),
mw mul(), and mw div() respectively.
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we compare automatic differentiation’s gradient to the following finite difference:

d

dx
f(x) ≈ f(x− 2h) − 8f(x− h) + 8f(x + h) − f(x + 2h)

12h
. (4.15)

We use a step size of h = 0.0001 for all our numerically computed finite differences. For

second order derivatives of the same independent variable, we use the formula:

d2

dx2
f(x) ≈ −f(x− 2h) + 16f(x− h) − 30f(x) + 16f(x + h) − f(x + 2h)

12h2
, (4.16)

and for second order derivatives over two different variables, we use the formula:

d2

dxdy
f(x, y) ≈ 1

144h2
(f(x− 2h, y − 2h) − 8f(x− 2h, y − h) + 8f(x− 2h, y + h)

−f(x− 2h, y + 2h) − 8f(x− h, y − 2h) + 64f(x− h, y − h)

−64f(x− h, y + h) + 8f(x− h, y + 2h) + 8f(x + h, y − 2h)

−64f(x + h, y − h) + 64f(x + h, y + h) − 8f(x + h, y + 2h)

−f(x + 2h, y − 2h) + 8f(x + 2h, y − h) − 8f(x + 2h, y + h)

+f(x + 2h, y + 2h)) .

(4.17)

If the two calculated derivatives are within 5% of each other, the check passes. For each

function, the test checks the equality of each derivative pair over 100,000 randomly selected

test points. The test only passes if all checks pass.

Over the course of designing this test, we encountered unique difficulties in determining

whether the two derivatives were similar enough. The problem did not arise from improperly

implementing the automatic derivatives, but rather from ensuring the numerical derivatives

were accurate. In cases where the derivatives were high, such as evaluating the derivative

of tan(x) for x close to π/2, the formulas for finite difference would suffer in their accuracy.

Thus, we were required our test to pull random values only from specially selected ranges

that depended on the tested function.

4.4 Non-Classical Derivative Information

Unfortunately for us, implementing automatic differentiation for our N-body simula-

tions is not as simple as redefining our numerical objects and functions. To explain how, we
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must first understand “derivative information” and what it means for such information to

be “classical” or “non-classical”. We define “derivative information” as the ability to pre-

dictably measure the rate of change in the output of a function given a known infinitesimal

change in its inputs. If changing the input of a function causes a measurable and predictable

change in its output, we say that the function must propagate derivative information.

In order for automatic differentiation to properly calculate the derivative information

propagated through a function, that function must have clearly defined derivatives. The ele-

mentary functions within our mathematical library have derivatives that are also elementary,

so we say that the derivative information propagated through such functions is “classical”.

However, several processes within our code can cause us to lose our derivative infor-

mation or not properly convey the derivatives in the first place. This in particular occurs

when we call a function that does not behave like a traditional mathematical function, such

as a random number generator or a Boolean operation. While the derivatives of such func-

tions are either zero or undefined, we know they still propagate finite non-zero derivative

information as they have a tangible and measurable effect on the final output state of the

simulation. Such derivative information is thus classified as “non-classical”. As these prob-

lematic operations are mostly discrete in nature, approximating the propagated derivatives

of each one will require us to analyze its continuous analog.

4.4.1 Derivatives from Random Distributions

In order to generate a progenitor dwarf galaxy in our simulations, we randomly generate

the position and velocity of each body in our progenitor using a process called rejection-

sampling. For each body, we generate a random number to represent the distance between

the body and the center of the progenitor (its radius). This radius contains no classical

derivative information since it was randomly generated from a uniform distribution. Our

code then takes this radius and compares it to a radial probability distribution function by

generating another random number between 0 and 1. If this random number is less than

the likelihood of the body having its radius, that radius is logged for the body. Otherwise,

the code repeats testing a new radius. The velocities of each body are also calculated using

rejection-sampling, but we use an energy distribution function to determine their speeds.

The radial distribution function we use is dependent solely on the scale radius of the

progenitor. Yet, no classical derivative information reaches the position data. If we were to
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slightly increase the scale radius, we would expect to see the distribution of bodies shift to

higher radii within the progenitor, which would naturally have a sizeable impact in the final

stream shape. Therefore, we must derive a way to estimate the propagated gradient and

Hessian of each body’s initial position and velocity.

We look at an arbitrary probability distribution function f(x, ϵ), where x is a list of

parameters which define the shape of the function, ϵ is the independent variable, and f is

both normalized and continuous. We also specify some additional properties of f within this

analysis as the random distributions we are interested in also bear these properties:

D(f(x, ϵ)) : {ϵ|0 ≤ ϵ < ∞}, (4.18)

(∀ϵ)f(x, ϵ) ≥ 0, (4.19)

f(x, ϵ) = 0 =⇒ ϵ = 0. (4.20)

We generate a random distribution of indistinguishable bodies using f at x = x0. Since f is

a normalized function, it is possible to shift all the bodies distributed under f(x0, ϵ) to follow

a new distribution f(x1, ϵ) generated with a different list of parameters x = x1. Since the

only distinguishing feature of each body in this distribution is its value of ϵ, its transformed

ϵ must be a function of its initial ϵ. Therefore, we can define a function ε0(ϵ,x) to describe

the body’s new location under the new distribution given its old position. Specifically, we

define this function such that a body with ϵ = ϵ0 in the distribution f(x0, ϵ) transforms to

a body with ϵ = ε0(ϵ0,x) under the new distribution f(x, ϵ). It naturally follows that:

ε0(ϵ0,x0) = ϵ0. (4.21)

While there are a plethora of ways to reorganize the bodies to follow the shifted dis-

tribution, we select the way that minimizes the total absolute shift in ϵ for each body. We

do this to enforce the uniqueness, continuity, and smoothness of the transformation. Under

this restriction, it also follows that bodies that transform in this way never cross each other

along the ϵ-axis. That is because if a transformation did cause two bodies to cross each other

between the initial and final distributions, there would exist another transformation with a

lower total absolute shift in ϵ, which would be a mapping that reverses the final ϵ values of
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the two bodies. Therefore,

(∀ϵ1, ϵ2)(ϵ1 < ϵ2) =⇒ (ε0(ϵ1,x) < ε0(ϵ2,x)). (4.22)

From this property, we can make one more key observation. Since bodies do not move

past each other under this transformation, the total number of bodies with ϵ1 < ϵ < ϵ2 in

the initial distribution f(x0, ϵ) must be the same as the number of bodies with ε0(ϵ1,x) <

ϵ < ε0(ϵ2,x) in the final distribution f(x, ϵ). In other words, the area under the distribution

curve is invariant under this transformation:∫ ϵ2

ϵ1

f(x0, ϵ)dϵ =

∫ ε0(ϵ2,x)

ε0(ϵ1,x)

f(x, ϵ)dϵ. (4.23)

Setting ϵ1 = ϵ and ϵ2 = ϵ + dϵ, we get:

∫ ϵ+dϵ

ϵ

f(x0, ϵ
′)dϵ′ =

∫ ε0(ϵ+dϵ,x)

ε0(ϵ,x)

f(x, ϵ′)dϵ′. (4.24)

Evaluating the integrals on both sides and dividing by dϵ gives:

f(x0, ϵ) = f(x, ε0(ϵ,x))
∂

∂ϵ
ε0(ϵ,x). (4.25)

Taking the total derivative on both sides with respect to xi, where xi ∈ x, yields:

0 =
d

dxi

f(x, ε0(ϵ,x))
∂

∂ϵ
ε0(ϵ,x) + f(x, ε0(ϵ,x))

∂

∂ϵ

d

dxi

ε0(ϵ,x). (4.26)

Evaluating the total derivatives on the right-hand side then gives us:

0 =
∂

∂xi

f(x, ε0(ϵ,x))
∂

∂ϵ
ε0(ϵ,x)

+
∂

∂ϵ
f(x, ε0(ϵ,x))

∂

∂ϵ
ε0(ϵ,x)

d

dxi

ε0(ϵ,x)

+ f(x, ε0(ϵ,x))
∂

∂ϵ

d

dxi

ε0(ϵ,x).

(4.27)
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By dividing both sides by f(x, ε0(ϵ,x)) and reorganizing our terms, we find:

∂

∂ϵ

d

dxi

ε0(ϵ,x) +
∂

∂ϵ
ln(f(x, ε0(ϵ,x)))

∂

∂ϵ
ε0(ϵ,x)

d

dxi

ε0(ϵ,x)

= − ∂

∂xi

ln(f(x, ε0(ϵ,x)))
∂

∂ϵ
ε0(ϵ,x).

(4.28)

While Equation 4.28 looks unwieldy, we can actually see that it is a first-order linear

non-homogeneous differential equation of the form:

y′(t) + p(t)y(t) = g(t), (4.29)

with solutions of the form:

y(t) = e−
∫
p(t)dt

[∫
e
∫
p(t)dtg(t)dt + C

]
. (4.30)

To use Equation 4.30 as a template for solving Equation 4.28, must first solve for the inte-

grating factor: ∫
p(t)dt =

∫
∂

∂ϵ
ln(f(x, ε0(ϵ,x)))

∂

∂ϵ
ε0(ϵ,x)dϵ. (4.31)

By performing the substitution ε = ε0(ϵ,x), we greatly simplify the integral:∫
p(t)dt =

∫
∂

∂ϵ
ln(f(x, ε))dε = ln(f(x, ε0(ϵ,x))). (4.32)

Placing this integrating factor into our solution in Equation 4.30, we find:

d

dxi

ε0(ϵ,x) = − 1

f(x, ε0(ϵ,x))

[∫
∂

∂xi

f(x, ε0(ϵ,x))
∂

∂ϵ
ε0(ϵ,x)dϵ + C(x)

]
, (4.33)

where C(x) is the constant of integration.

In order to solve for this constant, we must supply the differential equation with an

initial condition. Consider taking the area under f(x0, ϵ) from ϵ = 0 to ϵ = a. By Equation

4.23, we know that this area is preserved when we change x:

∫ a

0

f(x0, ϵ)dϵ =

∫ ε0(a,x)

ε0(0,x)

f(x, ϵ)dϵ. (4.34)
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Taking the limit as a approaches infinity on both sides yields:

∫ ∞

0

f(x0, ϵ)dϵ =

∫ ε0(∞,x)

ε0(0,x)

f(x, ϵ)dϵ. (4.35)

Note that because f is a normalized function, the left-hand side of the equation must be

1. However, we also find that ε0(0,x) = 0 and ε0(∞,x) = ∞ because if these limits were

anything else, then the right-hand side of the equation would be less than 1. Therefore,

d

dxi

ε0(0,x) = 0. (4.36)

After applying this initial condition to Equation 4.33 and simplifying the integral, we deter-

mine:
d

dxi

ε0(ϵ,x) = − 1

f(x, ε0(ϵ,x))

∫ ε0(ϵ,x)

0

∂

∂xi

f(x, ε)dε. (4.37)

Setting x = x0 and generalizing for all derivatives, we find the gradient of a generated body’s

ϵ value to be:
∂

∂x
ε0(ϵ,x0) = − 1

f(x0, ϵ)

∫ ϵ

0

∇xf(x0, ε)dε. (4.38)

To calculate the second-order derivatives of ε0(ϵ,x), we take the total derivative with

respect to xj on both sides of Equation 4.37:

d2

dxidxj

ε0(ϵ,x) =
d

dxj

[
−1

f(x, ε0(ϵ,x))

∫ ε0(ϵ,x)

0

∂

∂xi

f(x, ε)dε

]
. (4.39)

Applying the product rule to the right-hand-side of the equation yields:

d2

dxidxj

ε0(ϵ,x) =
1

f(x, ε0(ϵ,x))2

(
∂

∂xj

f(x, ε0(ϵ,x)) +
∂

∂ϵ
f(x, ε0(ϵ,x))

d

dxj

ε0(ϵ,x)

)
×
∫ ε0(ϵ,x)

0

∂

∂xi

f(x, ε)dε− 1

f(x, ε0(ϵ,x))

d

dxj

∫ ε0(ϵ,x)

0

∂

∂xi

f(x, ε)dε.

(4.40)

The second term on the right-hand-side is the derivative of a definite integral whose limits

and integrand both depend on xj. Using some fundamental calculus, it is easy to prove the

following statement for any general functions a(x), b(x), and z(x, y):

d

dx

∫ b(x)

a(x)

z(x, y)dy =

∫ b(x)

a(x)

∂

∂x
z(x, y)dy + z(x, b(x))

∂b

∂x
− z(x, a(x))

∂a

∂x
. (4.41)
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Applying Equation 4.41 to the second term of Equation 4.40, we derive:

d2

dxidxj

ε0(ϵ,x) =
1

f(x, ε0(ϵ,x))2

(
∂

∂xj

f(x, ε0(ϵ,x)) +
∂

∂ϵ
f(x, ε0(ϵ,x))

d

dxj

ε0(ϵ,x)

)
×
∫ ε0(ϵ,x)

0

∂

∂xi

f(x, ε)dε− 1

f(x, ε0(ϵ,x))

×

(∫ ε0(ϵ,x)

0

∂2

∂xi∂xj

f(x, ε)dε +
∂

∂xi

f(x, ε0(ϵ,x))
d

dxj

ε0(ϵ,x)

)
.

(4.42)

Substituting Equation 4.37 into Equation 4.42 gives us:

d2

dxidxj

ε0(ϵ,x) = − 1

f(x, ε0(ϵ,x))

(
∂

∂xi

f(x, ε0(ϵ,x))
d

dxj

ε0(ϵ,x)

+
∂

∂xj

f(x, ε0(ϵ,x))
d

dxi

ε0(ϵ,x)

+
∂

∂ϵ
f(x, ε0(ϵ,x))

d

dxi

ε0(ϵ,x)
d

dxj

ε0(ϵ,x)

+

∫ ε0(ϵ,x)

0

∂2

∂xi∂xj

f(x, ε)dε

)
.

(4.43)

Setting x = x0 and generalizing for all derivatives, we derive our sought-after Hessian to be:

∂2

∂x∂x
ε0(ϵ,x0) = − 1

f(x0, ϵ)

(
2 ×∇xf(x0, ϵ) ⊙

∂

∂x
ε0(ϵ,x0)

+
∂

∂ϵ
f(x0, ϵ) ×

∂

∂x
ε0(ϵ,x0) ⊗ ∂

∂x
ε0(ϵ,x0)

+

∫ ϵ

0

∇2
xxf(x0, ε)dε

)
.

(4.44)

4.4.1.1 Testing Derivatives of the Radial Distance

MilkyWay@home has the capacity to simulate three types of progenitor dwarf galaxy

density profiles: Plummer, Hernquist, and Navarro-Frenk-White (NFW). MilkyWay@home

can generate single component progenitors using one of these profiles or pair any two together

to form a double component dwarf galaxy, where one profile is used for the distribution of

baryonic matter and the other acts as the distribution for dark matter. Because of this

complexity and the fact that NFW profiles are inherently divergent, we directly implement

the integrals in Equations 4.38 and 4.44 within our code to calculate the necessary derivative

information from our dwarf parameters.
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Within this subsection and the next, we will analytically compute these derivatives for

a simple dwarf progenitor in order to test whether or not our computations are accurate.

In particular, we will be using the Plummer distribution because its form and distribution

functions are mathematically friendly. When using rejection-sampling to determine radial

distance of each body, our code uses the following normalized density distribution:

f(r, a) = r2ρ(r, a) =
3r2

a3

(
1 +

r2

a2

)−5/2

. (4.45)

Since the only parameter that defines our distribution is the Plummer scale radius a, we

only have one first order derivative of the randomly generated radius (rs) that we need to

compute:
drs
da

=
−1

f(rs, a)

∫ rs

0

d

da
f(r, a)dr. (4.46)

Calculating the derivative within the integral, we find:

drs
da

=
−1

f(rs, a)

∫ rs

0

3r2

a4

(
1 +

r2

a2

)−7/2(
2
r2

a2
− 3

)
dr. (4.47)

By applying the trigonometric substitution r = a tan(θ), our integral becomes:

drs
da

=
−3

af(rs, a)

∫ tan−1(rs/a)

0

tan2(θ) cos5(θ)
(
2 tan2(θ) − 3

)
dθ. (4.48)

By reorganizing our terms and using some trigonometric identities, we can write our integral

as:
drs
da

=
−3

af(rs, a)

∫ tan−1(rs/a)

0

(
5 sin4(θ) − 3 sin2(θ)

)
cos(θ)dθ. (4.49)

Applying the substitution u = sin(θ) gives us:

drs
da

=
−3

af(rs, a)

∫ rs/
√

r2s+a2

0

(
5u4 − 3u2

)
du, (4.50)

and evaluating this integral yields:

drs
da

=
3r3sa

f(rs, a) (r2s + a2)5/2
. (4.51)
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Substituting in Equation 4.45, we find that our derivative takes on a very simple form:

drs
da

=
rs
a
. (4.52)

This surprisingly simple answer makes intuitive sense. If the scale radius of the progenitor

were to increase, we would expect each body to shift outward at a rate proportional to

its distance from the center, similar in principle to cosmic inflation. However, unlike cosmic

inflation, the growth is inversely proportional to the scale radius itself. This is because larger

scale radii lead to flatter distribution functions since they are normalized.

Since our distribution function is only dependent on a, the Hessian of rs also only has

one term. Using Equation 4.44, we see that the second derivative of rs has the form:

d2rs
da2

=
−1

f(rs, a)

(
2
∂

∂a
f(rs, a)

drs
da

+
∂

∂r
f(rs, a)

(
drs
da

)2

+

∫ rs

0

d2

da2
f(r, a)dr

)
. (4.53)

Substituting in the derivatives we have already calculated, the second derivative becomes:

d2rs
da2

=
−1

f(rs, a)

(
3r3s
a5

(
1 +

r2s
a2

)−7/2(
4
r2s
a2

− 6

)
+

∂

∂r
f(rs, a)

(rs
a

)2
+

∫ rs

0

d2

da2
f(r, a)dr

)
.

(4.54)

For the other two derivatives, we find:

∂

∂r
f(rs, a) =

3rs
a3

(
1 +

r2s
a2

)−7/2(
2 − 3

r2s
a2

)
, (4.55)

and
d2

da2
f(r, a) =

3r2

a5

(
1 +

r2

a2

)−9/2(
2
r4

a4
− 21

r2

a2
+ 12

)
. (4.56)

To solve the integral term within the Hessian, we apply the substitution r = a tan(θ):

∫ rs

0

d2

da2
f(r, a)dr =

3

a2

∫ tan−1(rs/a)

0

tan2(θ) cos7(θ)
(
2 tan4(θ) − 21 tan2(θ) + 12

)
dθ. (4.57)
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Reorganizing our terms and applying some trigonometric identities, we find:

∫ rs

0

d2

da2
f(r, a)dr =

3

a2

∫ tan−1(rs/a)

0

(
35 sin6(θ) − 45 sin4(θ) + 12 sin2(θ)

)
cos(θ)dθ. (4.58)

Applying another substitution u = sin(θ) simplifies the integral to:

∫ rs

0

d2

da2
f(r, a)dr =

3

a2

∫ rs/
√

r2s+a2

0

(
35u6 − 45u4 + 12u2

)
du. (4.59)

Evaluating the integral yields:

∫ rs

0

d2

da2
f(r, a)dr =

3r3s
a5

(
1 +

r2s
a2

)−7/2(
4 − r2s

a2

)
. (4.60)

Plugging Equations 4.55 and 4.60 into Equation 4.53 reveals a striking yet simple solution:

d2rs
da2

=
−1

f(rs, a)

3r3s
a5

(
1 +

r2s
a2

)−7/2(
4
r2s
a2

− 6 + 2 − 3
r2s
a2

+ 4 − r2s
a2

)
= 0. (4.61)

This fact can also be easily seen by taking the derivative of Equation 4.52:

d2rs
da2

=
d

da

drs
da

=
d

da

(rs
a

)
=

1

a

drs
da

− rs
a2

=
rs
a2

− rs
a2

= 0. (4.62)

4.4.1.2 Testing Derivatives of the Velocity

The velocity distribution for most progenitors is, in most cases, too complicated for us

to model analytically, even for systems with spherical symmetry. The energy distribution

for such systems is given by Binney & Tremaine (2008):

f(ϵ) =
1√
8π2

∫ ϵ

0

dΨ√
ϵ− Ψ

d2ρ

dΨ2
, (4.63)

where ϵ = −1
2
v2 − Φ(r), Ψ = Φ(r), and Φ(r) is the gravitational potential of the spherically

symmetric system. The single component Plummer sphere, however, has a very nice and

simple analytic form:

f(ϵ) =
24
√

2

7π3

a2

M4
ϵ7/2. (4.64)
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Therefore, for a given radial distance rs, the velocity distribution we apply rejection-sampling

to has the form:

f(v) = 4πv2 × 24
√

2

7π3

a2

M4
ϵ(v)7/2 =

96
√

2

7π2

a2

M4
v2

(
M√
r2s + a2

− 1

2
v2

)7/2

. (4.65)

However, since the gradient and Hessian calculations of our randomly selected velocity vs

require normalized distributions, we must first calculate the normalization constant A:

A =

∫ vesc

0

96
√

2

7π2

a2

M4
v2

(
M√
r2s + a2

− 1

2
v2

)7/2

dv, (4.66)

where vesc =
√

2M√
r2s+a2

is the escape velocity at a given radius r. Reorganizing terms, we

see:

A =

∫ vesc

0

96
√

2

7π2

a2√
M

(
r2s + a2

)−7/4
v2

(
1 −

√
r2s + a2

2M
v2

)7/2

dv. (4.67)

Applying the substitution v =
√

2M√
r2+a2

sin(θ), we get:

A =
384

7π2
a2M

(
r2s + a2

)−5/2
.

∫ π/2

0

sin2(θ) cos8(θ)dθ. (4.68)

Evaluating this integral gives us the normalization of our velocity distribution:

A =
3

4π
a2M

(
r2s + a2

)−5/2
, (4.69)

which turns out exactly to be our Plummer sphere density profile.

It is no coincidence that our normalization constant became this familiar density profile,

and it hints at a much deeper relationship. The formula provided by Binney & Tremaine

(2008) in Equation 4.63 is the 6D phase space distribution of positions and velocities in a

spherical, gravitationally stable system. If one were to integrate the distribution function

over all possible velocities, as we have done in calculating our normalization constant, we

would end up with a function that represents the distribution of positions in the system, its

spatial density profile. Therefore, for a given radial distance, we find that the normalized
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velocity distribution our rejection-sampling sees is:

f̃(v, rs, a,M) =
128

√
2

7π

(√
r2s + a2

M

)3/2

v2

(
1 −

√
r2s + a2

2M
v2

)7/2

. (4.70)

Our velocity distribution is dependent on two variables, the Plummer scale radius a

and the total mass M . This gives us a total of five derivatives we can calculate and test

with. We use Equation 4.38 to set up the first derivative of vs with respect to a:

dvs
da

=
−1

f̃(vs, rs, a,M)

∫ vs

0

d

da
f̃(v, rs, a,M)dv. (4.71)

One important thing we have to remember is that vs is also a function of rs, which we know

is dependent on a. Therefore, we need to take this into consideration when computing our

derivative:
d

da
f̃(v, rs, a,M) =

∂

∂a
f̃(v, rs, a,M) +

∂

∂r
f̃(v, rs, a,M)

drs
da

. (4.72)

Since

∂

∂r
f̃(v, rs, a,M) =

64
√

2

7π

rsv
2

M3/2 (r2s + a2)1/4

×

(
1 −

√
r2s + a2

2M
v2

)5/2(
3 − 5

√
r2s + a2

M
v2

)
,

(4.73)

and

∂

∂a
f̃(v, rs, a,M) =

64
√

2

7π

av2

M3/2 (r2s + a2)1/4

×

(
1 −

√
r2s + a2

2M
v2

)5/2(
3 − 5

√
r2s + a2

M
v2

)
,

(4.74)

we can show using Equation 4.52 that:

d

da
f̃(v, rs, a,M) =

64
√

2

7π

(r2s + a2)
3/4

v2

aM3/2

×

(
1 −

√
r2s + a2

2M
v2

)5/2(
3 − 5

√
r2s + a2

M
v2

)
.

(4.75)
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To further simplify this equation, we substitute in the escape velocity vesc =
√

2M√
r2s+a2

:

d

da
f̃(v, rs, a,M) =

256

7πa

v2

v3esc

(
1 − v2

v2esc

)5/2(
3 − 10

v2

v2esc

)
. (4.76)

Plugging this into our integral gives:

dvs
da

= − 256

7πav3escf̃(vs, rs, a,M)

∫ vs

0

v2
(

1 − v2

v2esc

)5/2(
3 − 10

v2

v2esc

)
dv. (4.77)

By using the substitution v = vesc sin(θ), we can simplify our integral to:

dvs
da

= − 256

7πaf̃(vs, rs, a,M)

∫ sin−1(vs/vesc)

0

sin2(θ) cos6(θ)
(
3 − 10 sin2(θ)

)
dθ. (4.78)

Evaluating this integral, we find:

dvs
da

= − 256

7πaf̃(vs, rs, a,M)

(
vs
vesc

)3(
1 − v2s

v2esc

)7/2

. (4.79)

Plugging in our normalized distribution function into the equation, we find a surprisingly

simple answer for our derivative:
dvs
da

= − vs
2a

. (4.80)

The next derivative we will calculate is the the first derivative of vs with respect to M :

dvs
dM

=
−1

f̃(vs, rs, a,M)

∫ vs

0

d

dM
f̃(v, rs, a,M)dv. (4.81)

Thankfully, rs is not a function of M for this case, so we can more easily evaluate our

derivatives. We can write our derivative with respect to the mass M as:

d

dM
f̃(v, rs, a,M) = −64

√
2

7π

(r2s + a2)
3/4

v2

M5/2

×

(
1 −

√
r2s + a2

2M
v2

)5/2(
3 − 5

√
r2s + a2

M
v2

)
,

(4.82)
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or in terms of the escape velocity vesc:

d

dM
f̃(v, rs, a,M) = − 256

7πM

v2

v3esc

(
1 − v2

v2esc

)5/2(
3 − 10

v2

v2esc

)
, (4.83)

Plugging this derivative into our integral yields:

dvs
dM

=
256

7πMv3escf̃(vs, rs, a,M)

∫ vs

0

v2
(

1 − v2

v2esc

)5/2(
3 − 10

v2

v2esc

)
dv. (4.84)

We see that the integral above is the same integral in Equation 4.77, which we have already

solved. We can therefore show that our mass derivative of vs also has a very simple form:

dvs
dM

=
vs

2M
. (4.85)

Knowing these two derivatives, we can very easily calculate all the necessary second-

order derivatives for our tests using rudimentary calculus:

d2vs
da2

=
d

da

dvs
da

=
d

da

[
− vs

2a

]
= −

[
dvs
da

1

2a
− vs

2a2

]
=

vs
4a2

+
vs

2a2
, (4.86)

d2vs
dadM

=
d

da

dvs
dM

=
d

da

[ vs
2M

]
=

1

2M

dvs
da

, (4.87)

d2vs
dM2

=
d

dM

dvs
dM

=
d

dM

[ vs
2M

]
=

dvs
dM

1

2M
− vs

2M2
=

vs
4M2

− vs
2M2

. (4.88)

We therefore show that our the Hessian of vs takes the following values:

d2vs
da2

=
3vs
4a2

, (4.89)

d2vs
dadM

= − vs
4Ma

, (4.90)

d2vs
dM2

= − vs
4M2

. (4.91)

4.4.1.3 Derivatives of Root-Finding Algorithms

In order to properly and accurately calculate the derivatives above using Equations

4.38 and 4.44, we are required to calculate the gradient and Hessian of the normalized distri-

bution function. We were intending to use simple numerical derivatives to quickly calculate
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these derivatives, but we soon discovered that this method was not accurate enough to pass

the basic tests listed in the last two sections, requiring several step sizes to be optimized

simultaneously. To circumvent this, we decided to implement automatic differentiation for

this purpose as well. For the radial positions, there were no complications. However, the

velocities distributions once again proved to be difficult to work with.

The main source of complication arises from its distribution function. As it requires a

complicated integration for anything not a Plummer sphere, we must numerically approxi-

mate it, necessitating the accurate determination of its upper and lower bounds of integra-

tion. While its lower bound is a straightforward calculation, the upper bound requires that

we find the radius at which the total energy of a gravitationally bound test body is equal

to its gravitational potential energy (i.e. its kinetic energy is zero). To solve this, our code

employs a bisection algorithm to quickly find the root of the function. However, this type of

algorithm does not propagate derivative information, and since the root we calculate must

contain information about the mass and radius of the dwarf galaxy, we must again find a

way to artificially insert to correct derivative information into the code.

Assume we have an analytic function f(x, ϵ) with a root ϵ0(x), where x is the list

of parameters that define the function. We know that such a root must have an inherent

dependence on x. We therefore know that for values of ϵ close to ϵ0(x), our function can be

written as:

f(x, ϵ) =
∂

∂ϵ
f(x, ϵ0(x))(ϵ− ϵ0(x)) +

1

2

∂2

∂ϵ2
f(x, ϵ0(x))(ϵ− ϵ0(x))2 + · · · . (4.92)

taking the derivative of both sides with respect to one of the parameters xi, we find:

d

dxi

f(x, ϵ) = (ϵ− ϵ0(x))
d

dxi

[
∂

∂ϵ
f(x, ϵ0(x))

]
− ∂

∂ϵ
f(x, ϵ0(x))

d

dxi

ϵ0(x)

+
1

2
(ϵ− ϵ0(x))2

d

dxi

[
∂2

∂ϵ2
f(x, ϵ0(x))

]
− (ϵ− ϵ0(x))

∂2

∂ϵ2
f(x, ϵ0(x))

d

dxi

ϵ0(x) + · · · .

(4.93)
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By evaluating both sides of the equation at ϵ = ϵ0(x) gives us:

∂

∂xi

f(x, ϵ0(x)) = − ∂

∂ϵ
f(x, ϵ0(x))

d

dxi

ϵ0(x). (4.94)

Rearranging terms, we get the gradient of the root:

d

dxi

ϵ0(x) = −
∂
∂xi

f(x, ϵ0(x))
∂
∂ϵ
f(x, ϵ0(x))

(4.95)

The Hessian can be determined from taking the derivative of Equation 4.93 with respect

to the parameter xj:

d2

dxidxj

f(x, ϵ) =
d

dxj

[
(ϵ− ϵ0(x))

d

dxi

[
∂

∂ϵ
f(x, ϵ0(x))

]
− ∂

∂ϵ
f(x, ϵ0(x))

d

dxi

ϵ0(x)

+
1

2
(ϵ− ϵ0(x))2

d

dxi

[
∂2

∂ϵ2
f(x, ϵ0(x))

]
−(ϵ− ϵ0(x))

∂2

∂ϵ2
f(x, ϵ0(x))

d

dxi

ϵ0(x) + · · ·
]
.

(4.96)

By evaluating this derivative into each term, we expand the equation as such: The Hessian

can be determined from taking the derivative of Equation 4.93 with respect to the parameter
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xj:

d2

dxidxj

f(x, ϵ) = − d

dxj

ϵ0(x)
d

dxi

[
∂

∂ϵ
f(x, ϵ0(x))

]
+ (ϵ− ϵ0(x))

d2

dxidxj

[
∂

∂ϵ
f(x, ϵ0(x))

]
− d

dxj

[
∂

∂ϵ
f(x, ϵ0(x))

]
d

dxi

ϵ0(x) − ∂

∂ϵ
f(x, ϵ0(x))

d2

dxidxj

ϵ0(x)

− (ϵ− ϵ0(x))
d

dxj

ϵ0(x)
d

dxi

[
∂2

∂ϵ2
f(x, ϵ0(x))

]
+

1

2
(ϵ− ϵ0(x))2

d2

dxidxj

[
∂2

∂ϵ2
f(x, ϵ0(x))

]
+

∂2

∂ϵ2
f(x, ϵ0(x))

d

dxi

ϵ0(x)
d

dxj

ϵ0(x)

− (ϵ− ϵ0(x))
d

dxj

[
∂2

∂ϵ2
f(x, ϵ0(x))

]
d

dxi

ϵ0(x)

− (ϵ− ϵ0(x))
∂2

∂ϵ2
f(x, ϵ0(x))

d2

dxidxj

ϵ0(x) + · · · .

(4.97)

Setting ϵ = ϵ0(x), we find:

∂2

∂xi∂xj

f(x, ϵ0(x)) = − d

dxj

ϵ0(x)
d

dxi

[
∂

∂ϵ
f(x, ϵ0(x))

]
− d

dxj

[
∂

∂ϵ
f(x, ϵ0(x))

]
d

dxi

ϵ0(x)

− ∂

∂ϵ
f(x, ϵ0(x))

d2

dxidxj

ϵ0(x) +
∂2

∂ϵ2
f(x, ϵ0(x))

d

dxi

ϵ0(x)
d

dxj

ϵ0(x).

(4.98)

It is easy to show that:

d

dxi

[
∂

∂ϵ
f(x, ϵ0(x))

]
=

∂2

∂ϵ∂xi

f(x, ϵ0(x)) +
∂2

∂ϵ2
f(x, ϵ0(x)

d

dxi

ϵ0(x). (4.99)

We can therefore write the Hessian of our root as:

d2

dxidxj

ϵ0(x) =
−1

∂
∂ϵ
f(x, ϵ0(x)

(
∂2

∂ϵ∂xi

f(x, ϵ0(x))
d

dxj

ϵ0(x)

+
∂2

∂ϵ∂xj

f(x, ϵ0(x))
d

dxi

ϵ0(x)

+
∂2

∂ϵ2
f(x, ϵ0(x))

d

dxi

ϵ0(x)
d

dxj

ϵ0(x)

+
∂2

∂xi∂xj

f(x, ϵ0(x))

)
.

(4.100)
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4.4.2 Derivatives from Binning

Another place where our derivative information is classically unaccounted for is in

the case of counting and binning. To calculate our likelihood, we perform an Earth Mover

Distance calculation to see how similar the shape of our simulated tidal stream matches

to the input data stream. The shape of the simulated stream is measured by creating a

histogram, binning the simulated bodies in Λ and B. However, this process destroys the

classical derivative information propagated by each body. To illustrate this, imagine a body

with (Λ, B) coordinates of (Λ0, B0), which contain derivative information. To account for

this body in our likelihood calculation, our code must determine which (Λ, B)-bin must be

incremented by one count. Calculating the increase in the counts for a (Λ, B)-bin from

this body is equivalent to passing (Λ0, B0) through a finite linear combination of Heaviside

functions. However, since the derivative of the Heaviside function is the Dirac delta function,

no meaningful derivative information can be efficiently computed or propagated.

To better approximate the derivatives in the counts, we forgo an integer representation.

Instead of assigning a body to a single bin, we “split” the body into fractional pieces, placing

larger pieces in bins where the body is more likely to be placed. For example, if a body’s

coordinates would place it very close to a bin’s boundary, the largest piece would be placed in

the bin it occupies, but a similarly large piece would be added to the adjacent bin. The most

intuitive way to assign the fractional pieces to bins is to transform the point-like coordinates

of the body into a probability distribution across the entire sky. One sadly cannot determine

the shape of a probability distribution from the location of its mean value alone. However,

the sky positions of each body in our N-body simulations have an inherent resolution limit

determined by two factors: the softening length and the timestep.

Since the bodies in an N-body simulation do not represent individual stars, but rather

enormous clusters of mass, there exists a scale length at which the close interactions of bodies

would no longer reasonably reflect reality. This scale length is implemented as the softening

length (ls), the distance by which the force between two bodies is deadened. Therefore, we

would expect the positions of each body in our simulation to have an inherent uncertainty

on the order of ls. If a body has a heliocentric radius of rH , the inherent isotropic angular

uncertainty in the sky position from the softening length (σls) is:

σls =
ls
rh
. (4.101)
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The timestep also imposes a limit on how well we can know a body’s position. The

timestep (τ) is the smallest unit of time we can resolve when performing an N-body simula-

tion. If a body has a velocity, then the uncertainty of the position in the direction of motion

of the body is given by the velocity multiplied by the timestep. Translating to sky positions,

the uncertainty in the sky position from the timestep στ is:

στ = |µ|τ, (4.102)

where µ is the proper motion of the body. It should be noted, though, that unlike σls ,

στ is not isotropic, only following the direction of µ. We can therefore characterize the

total uncertainty in the sky position as an ellipse in the sky with a semi-major axis (a) and

semi-minor axis (b) given by:

a =

√
|µ|2τ 2 +

(
ls
rh

)2

, (4.103)

b =
ls
rh
. (4.104)

While it would be simple to translate this ellipse into a bivariate Gaussian distribu-

tion, such a distribution is unfortunately not appropriate for the system. This is because

a bivariate Gaussian distribution has a domain that covers R2, whereas the distribution

we need must be completely normalized over the surface of a unit sphere. Therefore, we

instead require a 5-parameter Fisher-Bingham distriubtion (FB5), also known as the Kent

distribution (Kent 1982). FB5 has the form:

f(x) =
1

c(κ, β)
e(κγ1·x)+β[(γ2·x)2−(γ3·x)2], (4.105)

where x is a vector on the unit sphere, κ and β are constants that describe the shape of

the distribution, c(κ, β) is the normalization constant, and the three vectors (γ1, γ2, γ3)

are 3-dimensional orthonormal vectors that describe the position and orientation of the

distribution. Since we want a distribution mapped in (Λ, B) coordinates, we define our

Cartesian system in x such that:

x = cos(B) cos(Λ)̂i + cos(B) sin(Λ)ĵ + sin(B)k̂. (4.106)
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According to Kent (1982), γ1 is the unit vector that points to the mean value of the distri-

bution. If we set the position of our body (Λ0, B0) as the mean, we trivially find:

γ1 = cos(B0) cos(Λ0)̂i + cos(B0) sin(Λ0)ĵ + sin(B0)k̂. (4.107)

γ2 is the unit vector that points in the same direction as the semi-major axis of the distri-

bution. Since this direction is the same as the proper motion of the body µ, we derive:

γ2 =
1

|µ|

[
(−µΛ sin(Λ0) − µB cos(Λ0) sin(B0)) î

+ (µΛ cos(Λ0) − µB sin(Λ0) sin(B0)) ĵ

+µB cos(B0)k̂
]
,

(4.108)

where µΛ = µ · Λ̂ and µB = µ · B̂. γ3 is the unit vector that points in the same direction

as the semi-minor axis and can be easily calculated by taking the cross product between γ1

and γ2:

γ3 = γ1 × γ2. (4.109)

Determining the constants κ and β for our distribution is a much more difficult task.

According to Kent (1982), κ represents the “concentration” of the distribution near the mean

while β is a measure of the distribution’s “ovalness”. However, there exists no analytic way

to derive these constants even when given a population to fit. Thankfully for us, there exists

a way to closely approximate these parameters in the case of large κ (Kent 1982). We should

satisfy this condition since we expect our ellipse of uncertainty to subtend only a very small

solid angle on the unit sphere. Assuming large κ, the moment estimates of κ̃ and β̃ of a

population set {y} are given by:

κ̃ ∼=
1

2 − 2r1 − r2
+

1

2 − 2r1 + r2
, (4.110)

β̃ ∼=
1

2

(
1

2 − 2r1 − r2
− 1

2 − 2r1 + r2

)
, (4.111)

where

r1 = E[γ1 · y], (4.112)

r2 = E
[
(γ2 · y)2 − (γ3 · y)2

]
, (4.113)
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and E[g(y)] is the expectation value of g(y).

To calculate the moment estimates of κ̃ and β̃, we assume our population set {y} to

be uniform ellipse on the unit sphere whose semi-major (a) and semi-minor (b) axes follow

those in Equations 4.103 and 4.104, respectively. We also further assume 0 ≤ b ≤ a < π/2.

We rotate our unit sphere in Cartesian space such that the center of our ellipse is on the

z-axis and the semi-major axis follows the x-axis, transforming {y} to {y′}. For easier

computation, we parameterize {y′} in spherical coordinates (θ, ϕ):

y′(θ, ϕ) = sin(θ) cos(ϕ)̂i + sin(θ) sin(ϕ)ĵ + cos(θ)k̂. (4.114)

The focal points of this ellipse lie at y′(d, 0) and y′(d, π), where:

cos(d) =
cos(a)

cos(b)
. (4.115)

We can therefore say that y′(θ, ϕ) lies on the boundary if it satisfies the following equation:

cos−1(y′(θ, ϕ) · y′(d, 0)) + cos−1(y′(θ, ϕ) · y′(d, π)) = 2a. (4.116)

Evaluating the dot products yields:

cos−1(cos(d) cos(θ) + sin(d) sin(θ) cos(ϕ))

+ cos−1(cos(d) cos(θ) − sin(d) sin(θ) cos(ϕ)) = 2a.
(4.117)

To simplify the math, we substitute s = cos(d) cos(θ) and t = sin(d) sin(θ) cos(ϕ) into the

equation:

cos−1(s + t) + cos−1(s− t) = 2a. (4.118)

Taking the cosine of both sides and using the cosine angle sum identity yields:

cos(cos−1(s + t)) cos(cos−1(s− t)) − sin(cos−1(s + t)) sin(cos−1(s− t)) = cos(2a), (4.119)

which simplifies to:

s2 − t2 −
√

1 − 2(s2 + t2) + (s2 − t2)2 = cos(2a). (4.120)
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Reorganizing the terms and simplifying further gets us:

cos2(2a) − 2(s2 − t2) cos(2a) = 1 − 2(s2 + t2). (4.121)

Our equation for the boundary of the ellipse is now represented in terms of the sum and

difference of s2 and t2. It can easily be shown using trigonometric identities that:

s2 ± t2 =
[
cos2(d) ∓ sin2(d) cos2(ϕ)

]
cos2(θ) ± sin2(d) cos2(ϕ). (4.122)

By substituting Equation 4.122 into Equation 4.121, we find:

cos2(2a) − 2
([

cos2(d) + sin2(d) cos2(ϕ)
]

cos2(θ) − sin2(d) cos2(ϕ)
)

cos(2a)

= 1 − 2
([

cos2(d) − sin2(d) cos2(ϕ)
]

cos2(θ) + sin2(d) cos2(ϕ)
)
.

(4.123)

Solving for cos2(θ) we find:

cos2(θ) =
sin2(2a) − 2 sin2(d) cos2(ϕ)(1 + cos(2a))

2
[
(1 − cos(2a)) cos2(d) − (1 + cos(2a)) sin2(d) cos2(ϕ)

] . (4.124)

After applying the double angle identities for sine and cosine, we derive the parameterization

of the ellipse’s boundary on the unit sphere:

θ(ϕ) = cos−1

√ sin2(a) csc2(d) − cos2(ϕ)

tan2(a) cot2(d) − cos2(ϕ)

 . (4.125)

We substitute p = sin(a) csc(d) and q = tan(a) cot(d) to further simplify our equation:

θ(ϕ) = cos−1

(√
p2 − cos2(ϕ)

q2 − cos2(ϕ)

)
. (4.126)

Given this equation of the ellipse, the expectation value of g(y′) takes the following

form:

E[g(y′)] =
1

Ω

∫ 2π

0

∫ θ(ϕ)

0

g(y′(θ, ϕ)) sin(θ)dθdϕ, (4.127)
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where Ω is the solid angle subtended by the ellipse {y′}. The formula for Ω is given by:

Ω =

∫ 2π

0

∫ θ(ϕ)

0

sin(θ)dθdϕ =

∫ 2π

0

∫ 1

cos(θ(ϕ))

d(cos(θ))dϕ. (4.128)

Evaluating the first integral and substituting in Equation 4.126, we find:

Ω = 2π −
∫ 2π

0

√
p2 − cos2(ϕ)

q2 − cos2(ϕ)
dϕ. (4.129)

Since cos(ϕ) is symmetric about ϕ = π, we can simplify our formula to:

Ω = 2π − 2

∫ π

0

√
p2 − cos2(ϕ)

q2 − cos2(ϕ)
dϕ. (4.130)

Substituting x = cos(ϕ), our solid angle becomes:

Ω = 2π − 2

∫ 1

−1

√
p2 − x2

(q2 − x2) (1 − x2)
dϕ. (4.131)

Since our integrand is even, we can further simplify our integral to:

Ω = 2π − 4

∫ 1

0

√
p2 − x2

(q2 − x2) (1 − x2)
dϕ. (4.132)

Unfortunately, this integral does not have an elementary solution. However, we can represent

this integral as an elliptic integral. It can be shown that our solid angle formula has the

solution:

Ω = 2π − 4
p2

q
√
p2 − 1

Π

(
1

1 − p2

∣∣∣∣ q2 − p2

q2 (1 − p2)

)
, (4.133)

where Π(n|m) is the complete elliptic integral of the third kind. It can also be shown that:

p2 =
sin2(a) cos2(b)

sin2(a) − sin2(b)
(4.134)

and

q2 =
sin2(a)

sin2(a) − sin2(b)
. (4.135)
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Therefore,

Ω = 2π − 4
sin(a) cos2(b)

sin(b) cos(a)
Π

(
sin2(b) − sin2(a)

sin2(b) cos2(a)

∣∣∣∣ sin2(b) − sin2(a)

cos2(a)

)
. (4.136)

Elliptic integrals are tedious to compute, especially those of the third kind. However, since

we anticipate a and b to be small angles, we can try to approximate the value of this elliptic

integral. In our small angle limit, we see that the m term in Π(n|m) approaches zero. For

|m| << 1,

Π(n|m) ≈ π

2
√

1 − n
+

πm

4n

(
1√

1 − n
− 1

)
. (4.137)

Therefore, we can quickly and easily approximate our solid angle Ω to be:

Ω ≈ 2π

(
1 − cos(b)

(
1 − 1

2
sin2(b)

(
tan(a)

tan(b)
− 1

)))
. (4.138)

Taking the small angle approximation of Equation 4.138 shows us that Ω ≈ πab, the area of

an ellipse in a flat geometry.

We calculate r1 using the following formula:

r1 = E[γ1 · y] = E[γ ′
1 · y′] =

1

Ω

∫ 2π

0

∫ θ(ϕ)

0

(γ ′
1 · y′) sin(θ)dθdϕ

=
1

Ω

∫ 2π

0

∫ θ(ϕ)

0

cos(θ) sin(θ)dθdϕ

(4.139)

After integrating with respect to θ, we find:

r1 =
1

2Ω

∫ 2π

0

(
1 − cos2(θ(ϕ))

)
dϕ =

2

Ω

∫ π/2

0

q2 − p2

q2 − cos2(ϕ)
dϕ

=
2

Ω

q2 − p2

q2 − 1

∫ π/2

0

1

1 + 1
q2−1

sin2(ϕ)
dϕ.

(4.140)

We see that our integral once again takes the form of an elliptic integral of the third kind:

r1 =
2

Ω

q2 − p2

q2 − 1
Π

(
1

1 − q2

∣∣∣∣ 0) . (4.141)

This nicely simplifies down to:

r1 =
π

Ω

q2 − p2

q
√

q2 − 1
. (4.142)



79

Substituting in p and q, we get the following formulation:

r1 =
π

Ω
sin(a) sin(b). (4.143)

Taking the limit as a and b become very small, we see that r1 approaches 1.

To calculate r2, we need to calculate two expectation values:

r2 = E
[
(γ2 · y)2

]
− E

[
(γ3 · y)2

]
. (4.144)

We therefore need to solve the following integrals:

E
[
(γ2 · y)2

]
=

1

Ω

∫ 2π

0

∫ θ(ϕ)

0

sin2(θ) cos2(ϕ) sin(θ)dθdϕ, (4.145)

E
[
(γ3 · y)2

]
=

1

Ω

∫ 2π

0

∫ θ(ϕ)

0

sin2(θ) sin2(ϕ) sin(θ)dθdϕ. (4.146)

Subtracting the two integrals from each other gives us:

r2 =
1

Ω

∫ 2π

0

∫ θ(ϕ)

0

sin2(θ) cos(2ϕ) sin(θ)dθdϕ. (4.147)

Evaluating the integral over θ, we find:

r2 =
1

Ω

∫ 2π

0

(
2

3
− cos(θ(ϕ)) +

1

3
cos3(θ(ϕ))

)
cos(2ϕ)dϕ. (4.148)

Substituting in Equation 4.126 yields:

r2 =
1

Ω

∫ 2π

0

(
2

3
−

√
p2 − cos2(ϕ)

q2 − cos2(ϕ)
+

1

3

(
p2 − cos2(ϕ)

q2 − cos2(ϕ)

)3/2
)

cos(2ϕ)dϕ. (4.149)

The first term in this integral naturally cancels out, leaving us with:

r2 =
1

Ω

∫ 2π

0

(
1

3

(
p2 − cos2(ϕ)

q2 − cos2(ϕ)

)3/2

−

√
p2 − cos2(ϕ)

q2 − cos2(ϕ)

)
cos(2ϕ)dϕ. (4.150)

Once again, we find ourselves with a rather tedious integral with no elementary solution.

So, we will need to find a way to approximate this integral for our exigencies. Since p2 =
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q2 cos2(b), we can show that:

p2 − cos2(ϕ)

q2 − cos2(ϕ)
= 1 − q2 sin2(b)

q2 − cos2(ϕ)
(4.151)

For very small b, we can therefore make the following approximations:√
p2 − cos2(ϕ)

q2 − cos2(ϕ)
≈ 1 − 1

2

q2 sin2(b)

q2 − cos2(ϕ)
− 1

8

(
q2 sin2(b)

q2 − cos2(ϕ)

)2

, (4.152)

(
p2 − cos2(ϕ)

q2 − cos2(ϕ)

)3/2

≈ 1 − 3

2

q2 sin2(b)

q2 − cos2(ϕ)
+

3

8

(
q2 sin2(b)

q2 − cos2(ϕ)

)2

. (4.153)

Applying these approximations to our original integral simplifies to:

r2 ≈
1

4Ω

∫ 2π

0

(
q2 sin2(b)

q2 − cos2(ϕ)

)2

cos(2ϕ)dϕ =
1

Ω

∫ π/2

0

(
q2 sin2(b)

q2 − cos2(ϕ)

)2

cos(2ϕ)dϕ. (4.154)

Evaluating this integral gives us:

r2 ≈
πq sin4(b)

4(q2 − 1)3/2Ω
. (4.155)

Substituting in q finally yields our approximation of r2:

r2 ≈
π

4Ω
sin(a) sin(b)

(
sin2(a) − sin2(b)

)
=

r1
4

(
sin2(a) − sin2(b)

)
. (4.156)

When binning a body, we use its sky position, heliocentric distance, and proper motion

to determine the parameters of its FB5 surface distribution. For each bin, we then numer-

ically calculate the volume under the surface distribution in that bin by taking the double

integral:

V =

∫ Λmax

Λmin

∫ Bmax

Bmin

1

c(κ, β)
e(κγ1·x)+β[(γ2·x)2−(γ3·x)2] cos(B)dΛdB, (4.157)

where c(κ, β) is approximated using:

c(κ, β) ≈ 2πeκ√
κ2 − 4β2

. (4.158)

The amount by which each bin count is incremented is still either 0 or 1, depending on

whether the body falls within the bin. However, we set the derivative information of the
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incremented amount equal to the derivative information stored within the calculated vol-

ume. Therefore, after assigning all bodies to their appropriate bins and propagating their

derivatives forward, we derive an adequate numerical approximation of how the counts in

each bin will shift given a change in the input parameters. This formulation also allows us to

derive derivative information for the total number of bodies that fall within the range of our

histogram, an important quantity needed to determine the total mass within the observed

stream, a key component of the output likelihood score.

4.4.3 Derivatives of the Reverse Evolution Time

Unlike most of our input parameters, the reverse evolution time is never passed into a

classical continuous function in the simulation code. Rather, it is implemented in a “while”

loop to tell the code when to stop performing the reverse orbit integration. Since this is

the only way we use the evolution time, no derivatives with respect to such times can be

calculated using classical automatic differentiation.

Fortunately for us, inserting the reverse evolution time derivatives into the code is

a much simpler endeavor than what was required in the previous sections. The reverse

evolution time τevolve debuts in the code when determining the initial starting position (x0)

and velocity (v0) of the dwarf progenitor using a reverse orbit integrator. In order for us

propagate the τb derivatives, we must calculate the τb derivatives of x0 and v0 and artificially

insert them into the derivative information of x0 and v0. Increasing τevolve is equivalent to

adding more timesteps to the reverse orbit integration. Therefore, the derivatives of the

time-reversed positions and velocities is easy to derive:

∂x0

∂τb
=

∂x0,T

∂τb
= v0,T = −v0, (4.159)

∂v0

∂τb
= −∂v0,T

∂τb
= −a0,T, (4.160)

where a0,T is the initial time-reversed external acceleration felt by the progenitor. The

accelerations in our system are not eigenstates of the time-reversal operator since our simu-

lations since our simulations apply dynamical friction to the LMC, a drag vector acting in

the opposite direction of its velocity. Therefore, we cannot state a0,T = a0.

Using Equations 4.159 and 4.160, we can artificially add the τb derivatives to the

“gradient” attribute in the x0 and v0 objects. Introducing the off-diagonal τb elements
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of the Hessian matrix to the x0 and v0 objects is also simple, implementing the gradient

information of v0 and a0:
∂2x0

∂τb∂p
= −∂v0

∂p
, (4.161)

∂2v0

∂τb∂p
= −∂a0,T

∂p
, (4.162)

where p is an input parameter other than τb. For the diagonal term of the x0 Hessian, we

easily derive:
∂2x0

∂τ 2b
= −∂v0

∂τb
= a0,T. (4.163)

However, the diagonal term of the v0 Hessian requires a quantity that is not used or stored

in our original N-body simulation:

∂2v0

∂τ 2b
= −∂2v0,T

∂τ 2b
= −∂a0,T

∂τb
= −j0,T, (4.164)

where j0,T is the initial time-reversed external jerk felt by the progenitor. As this quantity

can have a rather complicated derivation, we decided to approximate this quantity using a

numerical second derivative of the time-reversed velocity. Since we are performing a reverse

orbit calculation, we naturally calculate this velocity at several past timesteps. Using a back-

ward finite difference formula for the second derivative and the velocities from the previous

three timesteps, we can quickly and accurately calculate the time-reversed jerk:

j0,T ≈ 2v0,T
(0) − 5v0,T

(1) + 4v0,T
(2) − v0,T

(3)

∆τ 2b
, (4.165)

where v0,T
(i) is the time-reversed velocity calculated i steps in the past. Substituting into

Equation 4.164 and simplifying yields:

∂2v0

∂τ 2b
≈ 2v0

(0) − 5v0
(1) + 4v0

(2) − v0
(3)

∆τ 2b
. (4.166)

4.4.4 Derivatives from the EMD Calculation

When comparing the angular distribution of two tidal streams, we implement an Earth

Mover’s Distance (EMD) calculation rather than a χ2 calculation. This formulation intro-

duces an additional complexity to our automatic differentiation algorithms. To explain why,

we must first elaborate on how this calculation is computed in the first place. We describe
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a histogram containing the binned information of the simulated tidal stream in n bins as:

P = {((Λ0, B0), Np,0), . . . , ((Λn−1, Bn−1), Np,n−1)}, (4.167)

where (Λi, Bi) is the Λ-B coordinate of the ith bin and Np,i is the number of bodies binned

in the ith bin. We similarly describe the data histogram containing the real tidal stream we

wish to compare against as:

Q = {((Λ0, B0), Nq,0), . . . , ((Λn−1, Bn−1), Nq,n−1)}. (4.168)

Before performing our EMD calculation, we first normalize both histograms:

P̃ =

{(
(Λ0, B0), wp,0 =

Np,0∑
k Np,k

)
, . . . ,

(
(Λn−1, Bn−1), wp,n−1 =

Np,n−1∑
k Np,k

)}
, (4.169)

Q̃ =

{(
(Λ0, B0), wq,0 =

Nq,0∑
k Nq,k

)
, . . . ,

(
(Λn−1, Bn−1), wq,n−1 =

Nq,n−1∑
k Nq,k

)}
, (4.170)

We therefore define the EMD between P̃ and Q̃ as5:

EMD(P̃ , Q̃) =
n∑

i=1

n∑
j=1

dijf(P̃ , Q̃)ij, (4.171)

where dij are the ground distances between the bins as described below:

dij =
√

(Λi − Λj)2 + (Bi −Bj)2, (4.172)

and f(P̃ , Q̃)ij is the flow matrix between P̃ and Q̃ that minimizes the work W :

W =
n∑

i=1

n∑
j=1

dijfij. (4.173)

The flow matrix f(P̃ , Q̃)ij represents a transformation of P̃ into Q̃ where each element

shows how much of the weight in the ith bin must be shifted into the jth bin for such

5Technically, the EMD is supposed to be normalized with respect to the flow matrix (EMD(P̃ , Q̃) =∑n
i=1

∑n
j=1 dijf(P̃ ,Q̃)ij∑n

i=1

∑n
j=1 f(P̃ ,Q̃)ij

), but since the we have normalized P and Q beforehand, the denominator of this

quantity will always be 1.
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a transformation to occur. Calculating an EMD boils down to determining which flow

matrix that transforms P̃ into Q̃ minimizes the total work, and this is where automatic

differentiation encounters a problem. Similar to the root-finding algorithm in Section 4.4.1.3,

the algorithm we use to determine this optimal flow matrix does not fully propagate the

derivative information we are interested in. Therefore, in order to determine the derivatives

of the EMD, we must find a way to approximate the derivatives of the optimized flow matrix.

Fortunately for us, since we are using simple 1-dimensional histograms, the EMD can

be easily calculated using the following algorithm: we define a sequence ∆ such that from

two histograms P and Q such that:

∆0 = 0, (4.174)

and

∆i+1 = Np,i + ∆i −Nq,i. (4.175)

Using this sequence, we can derive the EMD using the following analytical formula:

EMD =
n∑
i

|∆i| . (4.176)

This algorithm gives us an easy and direct way to calculate the EMD from a pair of his-

tograms P and Q. Since this algorithm uses simple functions, we can easily apply automatic

differentiation to this set of formulas. It should be noted, though, that the absolute value

function is not differentiable everywhere, which does complicate the differentiation. To make

these derivatives continuous, we approximate the derivative of the absolute value function

as a steep sigmoid function:
d|x|
dx

≈ x√
x2 + ϵ2

, (4.177)

where ϵ is the machine precision of the computer.

While it is not particularly needed for our analysis, it would be nice if automatic dif-

ferentiation could also calculate the derivatives of the EMD for the case of the 2-dimensional

histogram for potential future projects. In such cases, the code numerically calculates the

first and second order derivatives of the EMD with respect to the number of non-normalized

counts in each bin, using those derivatives to propagate the derivatives from the bin counts

in automatic differentiation. We originally tried to approximate the gradient and hessian

using solely the properties of EMD optimization, however, the method was both too com-
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putationally expensive and inaccurate to be properly implemented. A detailed synopsis of

this attempt can be found in Appendix C.



CHAPTER 5

ANALYSIS OF SYSTEMATIC ERRORS

After acquiring our best fit dwarf parameters from Chapter 2 and creating a version of

N -body compatible with automatic differentiation in Chapter 4, we ran those same fitted

parameters on N -body with automatic differentiation active. Over the course of this coding

project, we found one additional fit of the OCS progenitor that was consistent with Mendel-

sohn et al. (2022) (Run 12). The parameter sets we plugged into automatic differentiation

can be seen in Table 5.1.

5.1 Complications of a Turbulent Likelihood Surface

Something that became painfully apparent when calculating the gradient and Hessian

of the likelihood surface was its inherently turbulent and chaotic behavior. We quickly found

that the derivatives of such a surface become so obscenely large that performing derivative

propagations in linear space produces values that potentially cannot be stored within the

computer’s memory. For example, Run 3 produced gradients whose orders of magnitudes

hovered around 1041 and Hessians with an average order of magnitude of 1086. Table 5.2

shows the natural logarithm of the largest derivative within each run’s calculated gradient

and Hessian.

Table 5.1: Fitted dwarf parameters determined from MilkyWay@home’s
differential evolution genetic algorithm. Run 12 is the additional fit
found to be consistent with Mendelsohn et al. (2022).

Run τb Rb ξR Mb ξM ln(L)
2 3.6345 0.2327 0.2543 1.146 0.0179 -8.809277
3 3.6333 0.1812 0.1828 1.223 0.0126 -7.726065
5 3.6334 0.1842 0.1820 1.251 0.0119 -7.997704
12 3.6322 0.2195 0.2467 1.145 0.0200 -8.388980

Table 5.2: Natural logarithm of the largest value within each run’s gradient
and Hessian.

Run ln(∇ ln(L)max) ln(∇2 ln(L)max)
2 94.2 209.2
3 105.8 221.3
5 49.6 109.6
12 96.2 199.9

86
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The main source of these high derivatives comes from the chaotic behavior that arises

from body-body gravitational interactions. It is well known that gravitational systems with

three or more bodies exhibit chaotic behavior, where any slight change in the initial con-

ditions of the system potentially changes its final state drastically. Such systems naturally

imply very large first and second order derivatives. One way to observe how these body-body

interactions naturally propagate large derivatives is to modify the softening length. When

the softening length is large, the most dominant gravitational force between two nearby

bodies, the source of our observed chaos, is deadened. In Figure 5.1, we see that that for

smaller softening lengths, which are indicative of more chaotic behavior, the first and second

order derivatives of our likelihood score grow to extraordinarily large values. For each soft-

ening length in this plot, we generated a simulated tidal stream as our N -body executable

input and compared it to tidal streams with the same dwarf parameters, but generated using

different random seeds. We averaged over six seeds to get Figure 5.1.

In chaotic systems, we also expect to see the system to become even more chaotic

(exhibiting more extreme derivatives) as the system evolves over time. Figure 5.2 shows how

the derivative information of a single body grows rather quickly as the simulation progresses.

The large derivatives produced from this turbulence were what motivated the addition of

the “lnfactor gradient” and “lnfactor hessian” attributes.

While running with a larger softening length would allow us to circumvent the need to store

the large derivatives, the size we would need to significantly reduce our derivatives by orders

of magnitude would end up sacrificing too much accuracy in our acceleration computations.

A more in depth analysis of this can be found in Appendix D.

Surprisingly, the large factors we observe within the gradient and Hessian do not nec-

essarily imply a similarly large Jacobian. Recalling Equation 4.10, we see that our desired

Jacobian is essentially the matrix product of two matrices, where one is a sub-matrix of our

Hessian and the other is the inverse of another sub-matrix from the same Hessian. Looking

back at our example Run 3, our Hessian has an overall factor of 1086. Our non-inverted

sub-matrix would therefore contribute a factor of 1086 to the Jacobian whereas our inverted
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Figure 5.1: A plot showing how the softening length, which moderates chaotic
behavior, affects the gradient and Hessian of our likelihood score.
The red line shows the “lnfactor gradient” of the likelihood score,
and the blue line represents the likelihood score’s
“lnfactor hessian”. We observe that smaller softening lengths tend
to more extreme derivatives. For each softening length, we
averaged each quantity over 6 random seeds to obtain our standard
errors. We surprisingly find a maximum at a softening length of
10−5 kpc. We know that when the softening length is too small, the
system is dominated by strong interactions that cannot be properly
resolved in N-body, so the system evaporates. Bodies ejected by
such close encounters do not feel any more strong interactions for
the rest of the simulation, and thus do not contribute more to the
chaotic behavior.

portion contributes a cancelling factor of 10−86, providing a Jacobian of a much lower and

manageable order of magnitude.



89

Figure 5.2: A plot of how the derivative information increases as a function of
time. The simulation which generated this plot cam from
generating a 500-body 2-component dwarf galaxy and evolving it in
a Milky Way potential. The cyan line with red error bars shows the
average “lnfactor gradient” value of each body’s x coordinate, and
the yellow line with blue error bars shows the average
“lnfactor hessian” value of each body’s x coordinate. We see that
the size of the gradient and Hessian both steadily increase in order
of magnitude together almost logarithmically.

5.2 Discussion of Results

Despite our Jacobian’s insensitivity to the overall size of the Hessian, the Jacobian

calculation is still dominated by noise. We observe and quantify this noise in Table 5.3,

where we record the coefficient of variation (standard deviation divided by mean) of the

Jacobian. Just as in a turbulent river it is impossible to estimate the river’s speed from

measuring the velocity of a single water molecule, we cannot accurately determine how our

likelihood peak shifts given a single Jacobian calculation. However, just as we can average

the velocities of several water molecules to infer the river’s speed, so too can we average
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Table 5.3: Coefficients of variation of the Jacobian (absolute value). With the
exception of ∂Rb

∂qz
, each value is larger than one, the standard

deviation of the Jacobian must have a larger magnitude than its
average, implying turbulence.

∂
∂x

τb Rb ξR Mb ξM

b 1.5 34 1.6 1.7 13
r 2.3 1.5 2.4 2.6 1.8
vx 2.3 1.5 2.4 2.6 1.4
vy 1.9 2.6 1.2 1.6 2.2
vz 1.9 11 1.8 1.2 4.1

Mbulge 7.3 1.2 4.0 7.8 1.2
abulge 2.3 1.2 2.1 4.0 1.2
Mdisk 2.4 1.2 2.3 51 1.2
adisk 2.4 2.2 2.3 2.6 1.3
bdisk 1.6 1.4 1.8 7.8 1.2
vhalo 2.5 1.2 2.3 19 1.2
ahalo 2.5 3.8 1.7 1.6 2.9
qz 2.3 0.86 1.4 2.0 1.1

MLMC 2.4 1.4 2.3 2.7 1.4

several Jacobians to approximate the true sensitivity matrix.

Bearing in mind the complications and limitations that arise from a chaotic likelihood

surface, we calculate the sensitivity matrices for each of the runs listed in Table 5.1. In Table

5.4, we report the calculated Jacobian averaged over all four runs. Although the Jacobian

alone is not sufficient to draw conclusions about the systematic errors of our optimizations,

we do note that the scale radius of the LMC (aLMC) is exactly zero, implying no relationship

between the size of the LMC and any of the fitted parameters. As striking as this observation

appears, this result is not surprising since our optimizations did not originally include an

LMC, setting its mass to zero. If we were to slightly shift the scale radius of the LMC while

keeping its mass zero, then we would expect to see no change in the system. The same

could be said if we were to calculate the derivatives of the likelihood score with respect to

any of the other LMC parameters, such as its initial position and velocity. As such, our

analysis will not consider the systematic errors from the uncertainty in the LMC radius.

While the Jacobian terms regarding the LMC mass are non-zero, it is still not truly possible

to accurately measure its systematic error on the system without significant and severe
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Table 5.4: Average Jacobian of the fitted dwarf parameters. We represent the
units of length, time, mass, and angle are given in kiloparsecs,
gigayears, structure masses (1SM = 222, 288.47M⊙), and degrees
respectively.

∂
∂x

τb Rb ξR Mb ξM

b 4.8×10−2 −9.2×10−5 1.2×10−2 −6.4×10−1 −1.1×10−3

r −3.4×100 9.1×10−2 −8.1×10−1 2.9×101 −3.4×10−1

vx 8.1×10−1 −2.9×10−2 2.1×10−1 −7.2×100 9.7×10−2

vy −3.8×10−2 −5.1×10−3 −1.5×10−2 1.9×100 3.1×10−2

vz −3.7×10−1 −3.3×10−3 −1.1×10−1 6.8×100 4.1×10−2

Mbulge 6.3×10−6 −2.5×10−6 3.9×10−6 1.0×10−4 3.6×10−6

abulge 1.3×100 −4.3×10−2 3.4×10−1 −7.8×100 2.2×10−1

Mdisk 1.1×10−4 −6.5×10−6 3.2×10−5 −7.7×10−5 2.1×10−5

adisk −1.0×100 3.4×10−2 −2.9×10−1 9.2×100 −1.3×10−1

bdisk −1.0×10−1 2.4×10−3 −2.4×10−2 −4.6×10−1 −2.0×10−2

vhalo 1.1×100 −6.6×10−2 3.0×10−1 2.3×100 2.7×10−1

ahalo 3.0×10−1 −4.9×10−3 1.0×10−1 −3.8×100 2.2×10−2

qz 3.7×10−1 −3.9×10−2 1.3×10−1 2.1×101 3.1×10−1

MLMC −4.2×10−5 1.3×10−6 −1.1×10−5 3.7×10−4 −5.4×10−6

aLMC 0 0 0 0 0

extrapolation.

To calculate the amount of error contributed to each fitted parameter, we must first

determine the uncertainty of each of our model parameters. The uncertainties in the orbital

parameters b, r, vx, vy, and vz, as well as the halo velocity vhalo, were pulled directly from

Newberg et al. (2010). The bulge and disk parameter uncertainties were obtained by deter-

mining the standard deviation of parameters used in Law et al. (2005), Wang et al. (2022),

Lilleengen et al. (2022), and the commonly used galpy potential MWPotential2014 described

in Bovy (2015). We determined the uncertainty in the halo scale radius ahalo from analyzing

Newberg et al. (2010), Wang et al. (2022), Lilleengen et al. (2022), and Bovy (2015). Since

our original Milky Way potential had no halo flattening (qz = 1), we took the average oblate

flattening from Johnston et al. (2005) and Xue et al. (2015), recording the uncertainty as

one minus that average. Since we also ran with no LMC, we treat the uncertainty in its

mass MLMC as the mass reported from Erkal et al. (2019) (4.5×105SM), though using such

an error is a clear and blatant extrapolation beyond what one would consider reasonable for



92

Table 5.5: The uncertainties associated with each model parameter. We
represent the units of length, time, mass, and angle are given in
kiloparsecs, gigayears, structure masses (1SM = 222, 288.47M⊙), and
degrees respectively. We treat the uncertainty in the LMC mass
MLMC as the mass reported in Erkal et al. (2019), 4.5 × 105SM .

b r vx vy vz Mbulge abulge Mdisk adisk bdisk vhalo ahalo qz
1.2 1.8 10 1.0 9.2 62000 0.42 120000 1.9 0.019 25 2.8 0.19

use in error propagation. The uncertainties determined from analyzing the current literature

are listed in Table 5.5.

Using the uncertainties in Table 5.5, the Jacobian in Table 5.4, and basic error propa-

gation, we find the fractional error contribution of each model parameter for each of our five

fitted parameters, which are recorded in Table 5.6. The fractional errors provided within this

table are extraordinarily large. Ignoring the extrapolated errors from the lack of a LMC,

we find that the measured systematic errors on each of our fitted parameters range from

ten times to almost 600 times the fitted values. With the exception of the scale height of

the disk bdisk, every model parameter listed in Table 5.6 adds an incredibly significant sys-

tematic error to the fitted baryonic mass Mb of the progenitor dwarf, a parameter that has

otherwise been shown to be fit extremely well in MilkyWay@home (Shelton 2018). Despite

this inconsistency, we do notice that the systematic errors in the dark matter mass place an

error range that covers the ranges proposed by Newberg et al. (2010), Hendel et al. (2018),

and Fardal et al. (2019), suggesting that further resolution of either our starting errors or

the Jacobian could definitively narrow down the mass ranges of the OCS progenitor.

It is still possible that performing the analysis with smaller uncertainties in the model

parameters could produce more reasonable systematic errors. Shelton (2018) showed in his

thesis that when MW@home was given the tidal debris from a known simulated stream, the

distributed supercomputer was able to consistently pull out the parameters that produced

the simulated stream with reasonable accuracy. More specifically, it was able to determine

the evolution time τb to a precision of 3%, the baryonic mass Mb and scale radius ab to a

precision of 1%, and the dark matter mass Md and scale radius ad to a precision of 10%.

This level of precision is what we should expect if all of the Galactic model parameters are

known exactly. For the purpose of this analysis, we determine the minimum errors needed

to determine τb to 50%, Rb to 10%, Mb to 10%, Rd to 20%, and Md to within an order
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Table 5.6: Fractional error contributions from each of the non-fitted model
parameters. We also include the fractional errors for the dark
matter radius Rd and mass Md. We also record the total fractional
systematic error for each parameter below (totals were added in
quadrature). These totals do not include the contributions from the
missing LMC as we cannot confidently determine them from this
analysis.

τb Rb ξR Mb ξM Rd Md

b 1.6×10−2 5.5×10−4 7.3×10−2 6.3×10−1 9.9×10−2 9.2×10−2 6.4×10−1

r 1.7×100 8.3×10−1 7.2×100 4.4×101 4.5×101 9.1×100 6.3×101

vx 2.2×100 1.5×100 1.0×101 6.0×101 7.1×101 1.3×101 9.4×101

vy 1.0×10−2 2.5×10−2 7.5×10−2 1.6×100 2.3×100 9.8×10−2 2.8×100

vz 9.3×10−1 1.5×10−1 4.9×100 5.2×101 2.8×101 6.2×100 5.9×101

Mbulge 1.1×10−1 7.7×10−1 1.2×100 5.2×100 1.7×101 1.7×100 1.8×101

abulge 1.5×10−1 9.2×10−2 7.1×10−1 2.7×100 6.8×100 9.0×10−1 7.4×100

Mdisk 3.7×100 3.9×100 1.9×101 7.7×100 1.9×102 2.4×101 1.9×102

adisk 5.3×10−1 3.3×10−1 2.7×100 1.4×101 1.8×101 3.4×100 2.3×101

bdisk 5.4×10−4 2.3×10−4 2.2×10−3 7.2×10−3 2.7×10−2 2.8×10−3 2.8×10−2

vhalo 7.6×100 8.3×100 3.6×101 4.7×101 5.0×102 4.6×101 5.1×102

ahalo 2.3×10−1 6.9×10−2 1.4×100 8.8×100 4.4×100 1.8×100 9.9×100

qz 2.0×10−2 3.7×10−2 1.2×10−1 3.3×100 4.3×100 1.6×10−1 5.5×100

MLMC 5.2×100 2.9×100 2.4×101 1.4×102 1.8×102 3.0×101 2.3×102

TOTAL 1.0×101 8.3×100 4.3×101 1.0×102 5.4×102 5.5×101 5.6×102

of magnitude (100%). For the parameters pb that have a direct reference in the Jacobian

(where pb can be either τb, Rb, or Mb), calculating the target uncertainty σx of a parameter

x is very simple:

σx =
pbδpb∣∣∂pb
∂x

∣∣ , (5.1)

where δpb is the target precision we wish to achieve for the fitted parameter pb and ∂pb
∂x

is the

relevant Jacobian value. On the other hand, the fitted dark matter parameters require a more

complex analysis, since the fitted parameters describing the dark matter are represented by

ratios in relation to the baryonic components. The relation between the baryonic mass Mb,

the dark matter mass Md, and the fitted mass ratio ξM is given by the following equation:

Md = Mb

(
1

ξM
− 1

)
. (5.2)
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The error propagation of this relation is therefore given as follows:

σ2
Md

=

(
1

ξM
− 1

)2

σ2
Mb

+
M2

b

ξ4M
σ2
ξM

. (5.3)

By dividing both sides by Md, we can then derive the fractional error propagation:

δ2Md
= δ2Mb

+
δ2ξM

(1 − ξM)2
. (5.4)

Since:

δξM =

∣∣∣∣∂ξM∂x
∣∣∣∣ σx

ξM
(5.5)

we can rearrange Equation 5.4 as:

σx = ξM(1 − ξM)

∣∣∣∣∂ξM∂x
∣∣∣∣−1√

δ2Md
− δ2Mb

. (5.6)

The same math applies for the dark matter scale radius Rd and the fitted radius ratio

ξR. Using Equations 5.1 and 5.6, we calculated the maximum uncertainty allowed for each

parameter to produce systematic errors on par with our target baseline, which we record in

Table 5.7.

According to this table, we find that the baryonic mass Mb is the fitted parameter

that generally demands the highest sensitivity from all the model parameters with the ex-

ception of the disk mass and halo velocity which is more constrained by the dark matter

mass, though not by much. This observation is surprising since Shelton (2018) showed that

MilkyWay@home’s optimization algorithm is most sensitive to the baryonic mass, and thus

should have smaller systematic errors.

Ignoring the baryonic mass, we observe from Table 5.7 that there are some model

parameters whose required level of certainty is currently attainable. The Galactic latitude

(b) of the OCS progenitor only needs to be known down to roughly ±12 degrees (reasonable)

to fit the total dark matter mass of the OCS progenitor to within 100%, and the heliocentric

distance needs to be known to ±39 pc, a precision of roughly 0.2%. While this might seem

small, let us assume that the OCS’s progenitor has a diameter of about 1 kpc (consistent

with what we see in Figure 2.14). If we were to average the heliocentric distances of stars

near the progenitor, we would calculate an standard deviation of roughly 0.5 kpc. Following
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Table 5.7: Maximum uncertainty allowed for each model parameter. We list
the target precision of each fitted parameter as a percentage next to
the parameter name. The red text in the table shows the smallest
allowed uncertainty for a model parameter. The smaller the
number, the more sensitive the associated fitted parameter is to the
associated model parameter.

τb(50%) Rb(10%) Mb(10%) Rd(20%) Md(100%)

b (◦) 3.8×101 2.2×102 1.9×10−1 2.3×100 1.2×101

r (kpc) 5.3×10−1 2.2×10−1 4.1×10−3 3.5×10−2 3.9×10−2

vx (kpc Gyr−1) 2.2×100 6.9×10−1 1.7×10−2 1.3×10−1 1.4×10−1

vy (kpc Gyr−1) 4.8×101 3.9×100 6.3×10−2 1.8×100 4.2×10−1

vz (kpc Gyr−1) 4.9×100 6.0×100 1.8×10−2 2.6×10−1 3.2×10−1

Mbulge (SM) 2.9×105 8.1×103 1.2×103 7.2×103 3.7×103

abulge (kpc) 1.4×100 4.6×10−1 1.5×10−2 8.2×10−2 6.1×10−2

Mdisk (SM) 1.6×104 3.1×103 1.6×103 8.8×102 6.3×102

adisk (kpc) 1.8×100 5.8×10−1 1.3×10−2 9.9×10−2 1.0×10−1

bdisk (kpc) 1.7×101 8.4×100 2.6×10−1 1.2×100 6.8×10−1

vhalo (kpc Gyr−1) 1.7×100 3.0×10−1 5.3×10−2 9.5×10−2 4.9×10−2

ahalo (kpc) 6.1×100 4.1×100 3.2×10−2 2.7×10−1 6.2×10−1

qz 4.9×100 5.2×10−1 5.8×10−3 2.2×10−1 4.4×10−2

MLMC (SM) 4.3×104 1.6×104 3.3×102 2.6×103 2.5×103

the formula for the standard deviation of the mean (σµ = σ√
N

), we would need to know the

distances of at least 160 stars that were guaranteed to be within the stream, a number we

are able to detect near the progenitor’s core.

The velocities of the OCS progenitor, however, cannot be reasonably determined to an

adequate precision. Assuming a heliocentric distance of 21.5 kpc, our analysis would require

at most an uncertainty in proper motion on the order of ±0.025 rad Gyr−1, or ±0.0052 mas

yr−1. Even Gaia, a project well-known for having the most accurate proper motion data

to date, only has systematic errors in proper motion on the order of ±0.1 mas yr−1 (Luri

et al. 2018), not nearly sensitive enough to resolve the necessary uncertainties. The same

can also be said regarding the Galactic model parameters. Most papers that estimate the

mass and scale lengths of the Milky Way Galaxy can typically only do so down to an error

of 10% (Valenti et al. 2016; Licquia & Newman 2015; McMillan 2011, 2016; Kafle et al.

2014). However, the required uncertainties in our model parameters must be two or even



96

three orders of magnitude lower to produce our target precisions.

5.3 Improving the Jacobian Measurement

The results we acquired in Chapter 2 are very close to what we would expect in a dwarf

galaxy, with exception of its total mass and mass within 300 pc. We would therefore expect

the true systematic errors of the result to be much smaller than what our analysis with

automatic differentiation would otherwise suggest. However, even a hypothetical analysis

with impractically small uncertainties in the model parameters would fail to produce such

expected systematic errors. It is therefore clear that our evaluation of the sensitivity matrix

is far too large to produce a reasonable estimate of our systematic errors. The following

subsections list potential ways we can feasibly improve the accuracy of this measurement.

5.3.1 Averaging More Jacobians

One reason we could be finding a large Jacobian could be because we only have 4

best-fit data points to average over. If the distribution of Jacobians is generally random in

most directions within our search space, averaging too few points increases the likelihood

of having all of our Jacobians pointing in a similar direction, overestimating the average.

According to Table 5.3, the average coefficient of variation across each component of the

Jacobian is roughly 3.6. This means in order to measure an average Jacobian to within 50%

(using the formula for standard deviation of the mean σµ = σ√
N

), we would need at least

52 data points within our likelihood peak to resolve an accurate Jacobian and adequately

quantify the systematic errors of our fitted OCS progenitor.

5.3.2 Running with More Bodies and Using Finite Difference

One way we might be able to reduce the turbulence and size of the Jacobians may

be to increase the number of bodies we run within an optimization. Within Figure 5.3, we

performed a zoomed in parameter sweep over the baryonic radius near its local maximum,

similar to what was done in Figure 2.11. The figure on the left was created using a simulations

of 40,000 bodies, whereas the figure on the right used 80,000 bodies.

From Figure 5.3, we notice that the distribution of likelihood scores becomes narrower

and smoother when we double the number of bodies in the simulations. We do notice,
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Figure 5.3: A parameter sweep in Rb zoomed into the likelihood peak. The plot
on the left shows the parameter sweep run using 40,000 bodies.
The plot on the right was run using 80,000 bodies. We see that
while running with double the bodies has shifted the optimal
radius upwards, we notice that the plot with more bodies has a
slightly smoother likelihood surface.

however, that a slight slope in the likelihood surface emerges that would push our baryonic

radius Rb slightly higher in an optimization. This smoothing we observe indicates that

running with many more bodies, say 250,000 bodies, could sufficiently allow us to more

accurately calculate the derivatives of our likelihood surface without needing to worry about

noise. Unfortunately, running with that many bodies in a differential evolution algorithm

would take an unacceptable amount of time on MilkyWay@home. So, we could instead

initially optimize our results on MilkyWay@home using 40,000 bodies and polish our results

on a local supercomputer with 250,000 using a method like conjugate gradient ascent.

Although increasing the number of bodies does seem to reduce the noise in our likeli-

hood surface, we find that automatic differentiation instead detects derivatives of even higher

magnitudes. Using the fitted parameters from Run 3, we found that running with 80,000

bodies instead of 40,000 brings our gradient to an order of magnitude of 1064 from 1041

and our Hessian to an order of 10139 from 1086. This is because running with more bodies

increases the number of strong interactions within the simulation, thus making the system

more chaotic on its most infinitesimal scales. Adding more bodies in this sense is akin to

tightening a loose spring. While relaxed, the spring has wide coils of a large amplitude,

similar to the left plot in Figure 5.3. When we add more bodies and tighten the spring, the

coils become more taut, and the spring appears to smooth out. However, the ups and downs
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of the coil still exist on the springs smallest scales, exhibiting much more extreme slopes

than when it was loose. With such behavior in the likelihood surface, it may be wise to use

finite difference derivatives to calculate the requires derivatives for our sensitivity matrix.



CHAPTER 6

CONCLUSION

6.1 The OCS Fit

We made the first estimate of the mass and radial profile of the stars and dark matter

in the dwarf galaxy progenitor of a tidal stream. To do this, we developed a procedure for

characterizing the stellar distribution along and across the OCS, using turnoff stars in the

OCS observed in the SDSS and the DEC. We used turnoff stars in NGC 5053 to approximate

the stellar mass of the OCS. Using this information for a real observed tidal stream as input

to MilkyWay@home, which uses the N-body optimization method developed in Shelton et al.

(2021), we calculate the following properties for the dwarf galaxy progenitor of the OCS:

τevolve = (3.6337 ± 0.0004)Gyrs (6.1)

RB = (0.20 ± 0.02)kpc (6.2)

RD = (0.77 ± 0.05)kpc (6.3)

MB = (2.68 ± 0.07) × 105M⊙ (6.4)

MD = (1.9 ± 0.3) × 107M⊙ (6.5)

Mtotal = (2.0 ± 0.3) × 107M⊙ (6.6)

From these numbers, we calculated a mass-to-light ratio of γ = 73.5 ± 10.6. The implied

(1.1±0.2)×106M⊙ within 300 pc of the progenitor’s center is one order of magnitude smaller

than the presumed minimum mass of ultrafaint dwarf galaxies.

Our simulations of the OCS’s tidal debris show an unbounded and heavily disrupted

progenitor remnant at a current sky position of around (l, b) = ((264.9±2.9)◦, ((43.6±2.8)◦),

or (α, δ) = ((166.0 ± 0.9)◦, (−11.1 ± 2.5)◦). Further studies of the simulated tidal stream

suggest that most of the mass of the OCS (especially its dark matter) may reside in its tails,

making them optimal candidates for indirect dark matter detection experiments.

Portions of this chapter previously appeared as: Mendelsohn, E. J., Newberg, H. J., Shelton, S., et al.
2022, Astrophys. J., 926, 106..
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6.2 Systematic Errors from N-body Automatic Differentiation

We implemented automatic differentiation in an attempt to quantify the systematic

error that arises from our uncertainty within our Galactic model parameters, a method that

had never been attempted before. We however learned that due to the chaotic body-body

gravitational interactions moderated by the softening length, any likelihood surface produced

from an N-body simulation becomes dominated by turbulence, limiting the amount of useful

information that can be gleaned from its derivatives.

We did not succeed in calculating useful estimates of the systematic errors in our

measurement of the properties of the progenitor of the Orphan Stream. However, we continue

to find that there is a tremendous power in the information contained in the distribution of

tidal stream stars. It is possible that by increasing the number of runs (52 or more) we will

be able to reduce the uncertainty in the derivatives. It is possible that running optimizations

over more bodies and calculating the requisite Hessian matrix may allow us to calculate a

more accurate sensitivity matrix, though we may need to use finite difference derivatives for

us to properly determine it. The measurement of the systematic errors in the measurement

of the progenitor of the Orphan-Chenab Stream remains an open question.
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APPENDIX A

INCOMPLETENESS CORRECTIONS FOR SDSS DATA

Using stars in the range −21◦ < ΛOCS < −7◦ and 10◦ < ΛOCS < 21◦ with 20.7 < gcorr < 21.7,

we fit the stellar density of F-turnoff stars s(gcorr) to a linear model:

s(gcorr) = msgcorr + bs. (A.1)

We exclude stars with −7◦ < ΛOCS < 10◦ to avoid contamination from the Sagittarius

Stream. As seen in Figure 2.2, the line that fits the on-field is different from that of the off-

field, so we must fit them separately. Binning over 20 gcorr bins ([g1, g2, ..., g20]), we calculate

the number of stars that fall within each bin, differentiating between the on-field and off-field.

After normalizing these star counts, we use the “curve fit” algorithm from SciPy (Virtanen

et al. 2020) to calculate the slope (mon/off) and intercept (bon/off) and their respective errors

(δmon/off ,δbon/off) for the on-field and off-field:

mon ± δmon = (8.16 ± 1.62) × 10−3, (A.2)

moff ± δmoff = (4.91 ± 1.68) × 10−3, (A.3)

bon ± δbon = −0.123 ± 0.034, (A.4)

boff ± δboff = −0.054 ± 0.036. (A.5)

For each ith ΛOCS bin in the on-field subtending the ΛOCS range Λmin,i to Λmax,i, we

assume each completed bin in (Λ, gcorr)-space has the form of a trapezoidal prism bounded

by the fitted planes described in Equations A.2, A.3, A.4, and A.5. This makes the total

volume of such a bin equal to:

Vi = (21.4ms + bs)(Λmax,i − Λmin,i). (A.6)

To calculate the volume of the bin that is actually filled, we slice this volume using the

curve described in Equation 2.4. The infinitesimal volume dv of a trapezoidal cross-section

with width dΛ is given by:
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dv =
1

2
(ms(gb(Λ) + 20.7) + 2bs)(gb(Λ) − 20.7)dΛ. (A.7)

Substituting in gb(Λ), we find that the filled volume of the ith bin is:

vi =
msa

2
g

10

(
Λ5

max,i − Λ5
min,i

)
+

msagbg
4

(
Λ4

max,i − Λ4
min,i

)
+

1

3

(
msagcg +

msb
2
g

2
+ bsag

)(
Λ3

max,i − Λ3
min,i

)
+

1

2
(msbgcg + bsbg)

(
Λ2

max,i − Λ2
min,i

)
+

(
ms

c2g − 20.72

2
+ bs(cg − 20.7)

)
(Λmax,i − Λmin,i) .

(A.8)

Dividing vi by Vi gives us the filled ratio ki of the bin:

ki =
vi
Vi

. (A.9)

Performing error propagation, we get the error δki :

δ2ki =
1

V 4
i

((
a2g
10

(
Λ5

max,i − Λ5
min,i

)
+

agbg
4

(
Λ4

max,i − Λ4
min,i

)
+

1

3

(
agcg +

b2g
2

)(
Λ3

max,i − Λ3
min,i

)
+

bgcg
2

(
Λ2

max,i − Λ2
min,i

)
+

c2g − 20.72

2
(Λmax,i − Λmin,i)

)
Vi − 21.4 (Λmax,i − Λmin,i) vi

)2

δ2m

+
1

V 4
i

((
ag
3

(
Λ3

max,i − Λ3
min,i

)
+

bg
2

(
Λ2

max,i − Λ2
min,i

)
+ (cg − 20.7) (Λmax,i − Λmin,i))Vi − (Λmax,i − Λmin,i) vi)

2 δ2s

(A.10)

After calculating the filled ratio, we approximate the corrected star count (N ′
i) and

errors (σN ′
i
) using the following formulas:

N ′
i =

Ni

ki
, (A.11)

σN ′
i

=
1

ki

√
Ni +

(
Ni

ki

)2

δ2ki . (A.12)

This algorithm is repeated for each bin in the off-field as well.



APPENDIX B

CALCULATING MASS PER TURNOFF STAR USING

ISOCHRONES

As a sanity check for our previous calculation, we recalculate the baryonic mass per F-turnoff

star using theoretical isochrones of NGC 5053. To perform this calculation, we first need to

know three things about NGC 5053: its age, its metallicity ([Fe/H]), and its alpha abundance

([α/Fe]). From the literature, we find NGC 5053’s age to be 12.5± 2.0 Gyrs (Arellano Ferro

et al. 2010), its [Fe/H] to be -2.27 dex (Harris 1996, 2010 edition), and its [α/Fe] to be 0.2

(Tang et al. 2018). We use isochrone data from the Dartmouth Stellar Evolution Database

(DSED; Dotter et al. 2008), selecting the isochrones that best fit the globular cluster’s age

and chemical abundances. For our calculations, we use the isochrone with [Fe/H]= −2.49 dex

as it was the closest metallicity. However, we will later demonstrate that this deviation does

not greatly impact our result or errors by redoing the calculation assuming [Fe/H]= −1.98

dex.

The initial mass function (IMF) we implement comes from Kroupa (2001), and has the

form:

ε(m) =



Am−α0 0.01 ≤ m < 0.08

A(0.08)α1−α0m−α1 0.08 ≤ m < 0.5

A(0.5)α2−α1(0.08)α1−α0m−α2 0.5 ≤ m < 1.0

A(1.0)α3−α2(0.5)α2−α1(0.08)α1−α0m−α3 m > 1.0,

(B.1)

where m is the mass of the initial progenitor star in solar masses, A is the normalization

constant, α0 = 0.3±0.4, α1 = 1.3±0.3, α2 = 2.3±0.1, and α3 = 2.3±0.2. The uncertainties

in these powers are one-standard-deviation errors.

The formula we use to calculate the stellar mass per turnoff star is fairly straightfor-

ward. We take the total stellar mass within the cluster and divide it by the number of

F-turnoff stars we find in our isochrone:

mFT =
Mstars

NFT

=

∫
mε(m)dm∫
ε(m)dm

. (B.2)

Note that since the IMF is in both our numerator and denominator, the normalization
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constant A cancels out of our formula, making the normalization we select arbitrary. The

easiest quantity to calculate is NFT , the number of F-turnoff stars in our isochrone. We say a

star is an F-turnoff star if its (g− i)0 color falls between 0.12 and 0.47, and its g0 magnitude

within the g0 F-Turnoff Range of the isochrone, using the same convention developed in

Section 2.1.4 to define the range.

We define a function we call the F-check function (FC(m)) which outputs 1 if the input

initial mass m falls within our F-turnoff range as a result of our isochrone model and 0

otherwise:

FC(m) =

1 m is F-turnoff star

0 otherwise.
(B.3)

Given this function and a list of initial masses from the isochrone model ([m1,m2, . . . ,mN ]),

the formula for counting the number of F-turnoff stars becomes straightforward:

NFT =

∫
FC(m)ε(m)dm ≃

N∑
i=1

FC(mi)ε(mi)∆mi, (B.4)

where ∆mi is the width of the ith mass bin defined below:

∆mi =


m2 −m1 i = 1

mN −mN−1 i = N

mi+1−mi−1

2
otherwise.

(B.5)

Calculating the total stellar mass, on the other hand, is a bit more complicated. For

stars whose initial mass is larger than the largest mass in the isochrone model (m > mN),

their current mass is only but a small fraction of their original mass. This is because such stars

have turned into white dwarfs, neutron stars, or black holes, ejecting most of their original

mass through their planetary nebulae or supernovae. This ejected mass does not necessarily

disappear from the globular cluster, but could be accelerated with enough energy to push it

past the cluster’s escape velocity. We know the mass of NGC 5053 is (5.37± 1.32)× 104M⊙,

and from our previous fit, we find the scale Plummer radius of NGC 5053 to be 11.7±0.5 pc.

Performing a simple back-of-the-envelope calculation of the cluster’s highest escape velocity

(ve,max =
√

2GM
a

) gives an escape velocity of ∼ 6.4 km s−1. Since planetary nebulae expand
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from their center stars with speeds between 20 and 40 km s−1 (Schönberner et al. 2014), and

the shocks of supernovae reach speeds of several thousand km s−1 (Hovey et al. 2015), it is

safe to assume that all ejecta of stellar transitions is not gravitationally bound by the cluster

and can effectively be ignored in the mass calculation.

Under these assumptions, the total stellar mass can be calculated using the following

formula:

Mstars =

∫ mN+
∆mN

2

0.01

mε(m)dm +

∫ 100.0

mN+
∆mN

2

MR(m, [Fe/H])ε(m)dm, (B.6)

where MR(m, [Fe/H]) is the remnant mass function, a function that outputs the stellar rem-

nant mass of a star given its initial progenitor mass. We use the models fitted in Cummings

et al. (2018) to calculate the remnant mass of white dwarfs and the models from Fryer et al.

(2012) to account for the masses in neutron stars and black holes. We cut off our mass

calculation at an initial mass of 100 solar masses as the remnant masses past that point

become more uncertain due to mass loss and pair-instability supernovae which leave behind

no remnant (Fryer et al. 2012). Combining these models, we find the mass of the remnant

in solar masses is given by the following formula:

MR(m, [Fe/H])

=



(0.080 ± 0.016)m + (0.489 ± 0.030) m < 2.85

(0.187 ± 0.061)m + (0.184 ± 0.199) 2.85 ≤ m < 3.60

(0.107 ± 0.016)m + (0.471 ± 0.077) 3.60 ≤ m < 9.0 + 0.9[Fe/H]

1.36 9.0 + 0.9[Fe/H] ≤ m < 11.0

1.1 + 0.2e(m−11.0)/4.0 − (2.0 + 10[Fe/H])e0.4(m−26.0) 11.0 ≤ m < 30.0

Θ(m, [Fe/H]) 30.0 ≤ m < 50.0

max(1.8 + 0.04(90 −m),Θ(m, [Fe/H])) 50.0 ≤ m < 90.0

max(1.8 + log10(m− 89),Θ(m, [Fe/H])) m > 90.0,

(B.7)

where
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Θ(m, [Fe/H]) =

min(33.35 + (4.75 + 1.25 × 10[Fe/H])(m− 34),m− 10[Fe/H]/2(1.3m− 18.35)).
(B.8)

To propagate the errors in this calculation, we recompute the stellar mass per turnoff

star several times, changing the parameters with errors by their respective error. We have

11 quantities with errors in this calculation: the age, the four powers in the IMF, and the six

parameters from the white dwarf remnant formula derived by Cummings et al. (2018). For

each parameter, we either add its error, subtract its error, or leave the parameter unchanged.

We calculate the mass per turnoff star for each permutation (311 total) and treat each one as

a separate data point. We then take the average value and calculate the standard deviation

of all the points as the error. Using this method, we find that the stellar mass per F-turnoff

star we expect to measure in NGC 5053 to be 13.5 ± 2.7M⊙ per F-turnoff star. Using an

isochrone with [Fe/H]=-1.98 dex, we get an answer of 14.9 ± 3.5M⊙ per turnoff star. Both

of these numbers are exceptionally close to the value we measure in Section 2.1.4 and well

within the expected errors.



APPENDIX C

ATTEMPTING THE GENERAL EMD DERIVATIVES

While minimizing the EMD, the flow matrix is subjected to the following constraints6:

fij ≥ 0, (C.1)

∑
j

fij = wp,i, (C.2)

∑
i

fij = wq,j. (C.3)

One property of the optimal flow matrix we know is that opposite off-diagonal elements

cannot both be positive since such a matrix would describe a transformation that sends

some weight from one bin to another and back again, a clearly non-optimal transformation.

Therefore, to simplify the EMD calculation, we redefine the flow matrix fij in the following

way:

fij = δijhi +
gij + |gij|

2
, (C.4)

where the vector h is the vector containing the diagonal elements of the flow matrix and gij

is defined as the pseudo-flow matrix. If the pseudo-flow matrix is antisymmetric, then our

flow matrix both satisfies the aforementioned property of optimized flow matrices and the

constraint in Equation C.1. Substituting this redefinition into our constraints gives us:

gij = −gji, (C.5)

hk +
∑
j

gkj + |gkj|
2

= wp,k, (C.6)

hk +
∑
i

gik + |gik|
2

= wq,k. (C.7)

6Conventionally, the second and third constraints here are represented as inequalities. However, for the
purposes of this analysis, we treat the diagonal elements of the flow matrix as the amount of weight that is
not shifted in the transformation. Since the EMD is independent of the diagonal elements of the flow matrix,
this redefinition is valid.
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Using the antisymmetric nature of gij, we can rewrite the last two constraints as:

∑
i

gij = wq,j − wp,j = ∆j. (C.8)

Since the ground distance matrix dij is symmetric and gij is antisymmetric, our optimizing

work function becomes:

W =
∑
i>j

dij|gij|. (C.9)

Let us assume that for two histograms P and Q we already have the optimized flow

matrix f(P̃ , Q̃)ij. Its corresponding pseudo-flow matrix can be determined from the following

formula:

g(P̃ , Q̃)ij = f(P̃ , Q̃)ij − f(P̃ , Q̃)ji. (C.10)

Now let us apply a perturbation to the histogram P by increasing the bodies in the αth bin

by dNp,α. The normalized histogram then becomes P̃ + dP̃α where:

dP̃α =

{(
(Λi, Bi),

1∑
k Np,k

(
δiα − Np,i∑

k Np,k

)
dNp,α

)}
. (C.11)

We expect that a flow matrix that transforms P̃ + dP̃α into Q̃ would be very similar to

the flow matrix f(P̃ , Q̃). However, if we were to apply matrix f(P̃ , Q̃) onto P̃ + dP̃α, the

resulting transformed histogram would be Q̃ + dP̃α. Therefore, to find a flow matrix that

transforms P̃ + dP̃α to Q̃, we must add a flow matrix X(dP̃α)ij that transforms dP̃α to the

zero histogram. Since dP̃α contains only one bin with a positive value (the αth bin) while

all the others are negative, one simple flow matrix would transfer all the weight from that

bin to all the other bins:

X(dP̃α)ij = δiα(1 − δij)
Np,j

(
∑

k Np,k)2
dNp,α. (C.12)

Therefore, we can describe a flow matrix that transforms P̃ + dP̃α to Q̃ as:

f(P̃ + dP̃α, Q̃)ij = f(P̃ , Q̃)ij + δiα(1 − δij)
Np,j

(
∑

k Np,k)2
dNp,α. (C.13)

It should be noted that f(P̃ +dP̃α, Q̃)ij is not an optimal flow matrix. It merely satisfies the
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constraints of the flow matrix as describe in Equations C.1, C.2, and C.3. It does, however,

provide us with a good initial guess of the true optimal flow matrix between P̃ +dP̃α and Q̃.

Inserting this relation into Equation C.10 nets us our initial guess for the perturbed optimal

pseudo-flow matrix:

g(P̃ + dP̃α, Q̃)ij = g(P̃ , Q̃)ij +
δiαNp,j − δjαNp,i

(
∑

k Np,k)2
dNp,α. (C.14)

In order to optimize a pseudo-flow matrix, it is necessary for us to understand which

parameters of the matrix are independent or dependent on each other. To do this, we must

first solve the linear system of equations presented in Equation C.8. To illustrate the process,

we will examine the case of a histogram with five bins (n = 5) and generalize from there. In

the n = 5 case, our pseudo-flow matrix has the following form:

g =



0 −g10 −g20 −g30 −g40

g10 0 −g21 −g31 −g41

g20 g21 0 −g32 −g42

g30 g31 g32 0 −g43

g40 g41 g42 g43 0


(C.15)

Due to its antisymmetry constraint, the pseudo-flow matrix can completely characterized

by the elements it has below the zero-diagonal. Before applying the second constraint, we

vectorize these elements using the following mapping:

gij = gk where k =
i(i− 1)

2
+ j. (C.16)

We then set up an augmented matrix to represent the system of linear equations constraining

these values: 

1 1 0 1 0 0 1 0 0 0

−1 0 1 0 1 0 0 1 0 0

0 −1 −1 0 0 1 0 0 1 0

0 0 0 −1 −1 −1 0 0 0 1

0 0 0 0 0 0 −1 −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆0

∆1

∆2

∆3

∆4


. (C.17)

Within this system of linear equations, we can already identify a fractal pattern emerging



114

from the augmented matrix. Finding the row-echelon form of this matrix gives us:

1 1 0 1 0 0 1 0 0 0

0 1 1 1 1 0 1 1 0 0

0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆0

∆0 + ∆1

∆0 + ∆1 + ∆2

∆0 + ∆1 + ∆2 + ∆3

∆0 + ∆1 + ∆2 + ∆3 + ∆4


. (C.18)

Very clearly, we see a row of zeros on the bottom row of the matrix. Fortunately for us, since

P̃ and Q̃ are normalized, the sum of all ∆i must be zero, meaning we can freely remove that

row from the system of equations. Calculating the reduced row-echelon form of the matrix

therefore gives us: 
1 0 −1 0 −1 0 0 −1 0 0

0 1 1 0 0 −1 0 0 −1 0

0 0 0 1 1 1 0 0 0 −1

0 0 0 0 0 0 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣

−∆1

−∆2

−∆3∑3
i=0 ∆i

 . (C.19)

The pivots of this matrix correspond to the elements of the leftmost column of the pseudo-

flow matrix (gi0), showing that gij can be entirely characterized by the inner lower triangular

piece of the matrix and the two histograms P̃ and Q̃. In general, we find that for a histogram

length of n bins, the value gi0 can be calculated from the following formula:

gi0 = δi,n−1

n−2∑
k=0

∆k − (1 − δi,n−1)∆i −
i−1∑
j=1

gij +
n−2∑

j=i+1

gji. (C.20)

If we were to perturb P̃ by increasing the αth bin by dNp,α, we would observe the above

equation transforming as such:

g′i0 = gi0+
dNp,α∑
γ Np,γ

[
(1 − δi,n−1)

(
δiα − Np,i∑

γ Np,γ

)
− δi,n−1

n−2∑
β=0

(
δβα − Np,β∑

γ Np,γ

)]
. (C.21)
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Evaluating the rightmost summation gives us:

g′i0 = gi0 +
dNp,α∑
γ Np,γ

[
(1 − δi,n−1)

(
δiα − Np,i∑

γ Np,γ

)
+ δi,n−1

(
δa,n−1 −

Np,n−1∑
γ Np,γ

)]
. (C.22)

This further simplifies down to:

g′i0 = gi0 +
dNp,α∑
γ Np,γ

(
δiα − Np,i∑

γ Np,γ

)
. (C.23)

To find an approximate form for our perturbed optimal pseudo-flow matrix g′(P̃ +

dP̃α, Q̃)ij, we plan on taking our original guess g(P̃ + dP̃α, Q̃) an applying it to a Newton-

Raphson-esque optimization. Specifically, we will be using the “polishing” method we par-

tially covered in Section 4.1 (Equation 4.7). To perform this polishing, we must first calculate

the derivatives of the optimization function W with respect to the free parameters of the

pseudo-flow matrix. For a free parameter gij(i > j > 0), we find exactly three terms within

W containing that parameter. The partial of W with respect to gij is therefore give by:

∂W

∂gij
= dijsgn(gij) − di0sgn(g′i0) + dj0sgn(g′j0). (C.24)

Unfortunately, these derivatives are entirely composed of sign functions, whose derivatives

are Dirac delta functions, which are not continuous derivatives, complicating our derivative

analysis. To properly propagate our derivatives, we replace our sign functions with a steep

sigmoid function:

sgn(x) −→ lim
a−→0

x√
x2 + a2

= Sa(x), (C.25)

where a is a sufficiently small number (i.e. machine precision). Using this substitution, our

first-order derivatives become:

∂W

∂gij
= dijSa (gij) − di0Sa (g′i0) + dj0Sa

(
g′j0
)
. (C.26)
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Plugging in Equation C.21, we find:

∂W

∂gij
= dijSa (gij) − di0Sa

(
gi0 +

dNp,α∑
γ Np,γ

(
δiα − Np,i∑

γ Np,γ

))

+ dj0Sa

(
gj0 +

dNp,α∑
γ Np,γ

(
δjα − Np,j∑

γ Np,γ

))
.

(C.27)

Expanding out the infinitesimal terms, we get:

∂W

∂gij
= dij

gij√
g2ij + a2

− di0
gi0√

g2i0 + a2
+ dj0

gj0√
g2j0 + a2

− a2

(g2i0 + a2)
3/2

di0
dNp,α∑
γ Np,γ

(
δiα − Np,i∑

γ Np,γ

)

+
a2(

g2j0 + a2
)3/2dj0 dNp,α∑

γ Np,γ

(
δjα − Np,j∑

γ Np,γ

)
.

(C.28)

Taking another derivative with respect to the free parameter gkl yields:

∂2W

∂gij∂gkl
= δikδjldij

a2(
g2ij + a2

)3/2
− (δil − δik)di0

a2

(g2i0 + a2)
3/2

+ (δjl − δjk)dj0
a2(

g2j0 + a2
)3/2

+ (δil − δik)di0
3a2gi0

(g2i0 + a2)
5/2

dNp,α∑
γ Np,γ

(
δiα − Np,i∑

γ Np,γ

)

− (δjl − δjk)dj0
3a2gj0(

g2j0 + a2
)5/2 dNp,α∑

γ Np,γ

(
δjα − Np,j∑

γ Np,γ

)
.

(C.29)

We can approximate the true optimal pseudo-flow matrix g′(P̃ + dP̃α, Q̃)ij by applying our

initial guess g(P̃ + dP̃α, Q̃)ij to Equation 4.7:

g′(P̃ + dP̃α, Q̃) ≈ g(P̃ + dP̃α, Q̃) −
(
∂2W

∂g∂g

)−1
∣∣∣∣∣
g(P̃+dP̃ ,Q̃)

· ∂W
∂g

∣∣∣∣
g(P̃+dP̃ ,Q̃)

, (C.30)
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where the free parameters of g(P̃ + dP̃ , Q̃) are vectorized using the following mapping:

g(P̃ + dP̃α, Q̃)ij = g(P̃ + dP̃α, Q̃)m where m =
(i− 2)(i− 1)

2
+ j − 1. (C.31)

We calculate the derivative of our work function evaluated at g(P̃ + dP̃α, Q̃), ignoring in-

finitesimal terms of order two or higher:

∂W

∂gij

∣∣∣∣
g(P̃+dP̃α,Q̃)

= dij
g(P̃ , Q̃)ij√

g(P̃ , Q̃)2ij + a2
− di0

g(P̃ , Q̃)i0√
g(P̃ , Q̃)2i0 + a2

+ dj0
g(P̃ , Q̃)j0√

g(P̃ , Q̃)2j0 + a2

− a2(
g(P̃ , Q̃)2i0 + a2

)3/2di0 dNp,α∑
γ Np,γ

(
δiα − Np,i∑

γ Np,γ

)

+
a2(

g(P̃ , Q̃)2j0 + a2
)3/2dj0 dNp,α∑

γ Np,γ

(
δjα − Np,j∑

γ Np,γ

)

+
a2(

g(P̃ , Q̃)2ij + a2
)3/2dij δiαNp,j − δjαNp,i

(
∑

γ Np,γ)2
dNp,α

− a2(
g(P̃ , Q̃)2i0 + a2

)3/2di0 δiαNp,0 − δ0αNp,i

(
∑

γ Np,γ)2
dNp,α

+
a2(

g(P̃ , Q̃)2j0 + a2
)3/2dj0 δjαNp,0 − δ0αNp,j

(
∑

γ Np,γ)2
dNp,α.

(C.32)

Since g(P̃ , Q̃) is an optimized pseudo-flow matrix, then by definition, its gradient with respect

to its free parameters must be zero. Therefore, the first three terms in Equation C.32 must

total to zero as well. This makes our gradient directly proportional to the infinitesimal dNp,α:

∂W

∂gij

∣∣∣∣
g(P̃+dP̃α,Q̃)

=
a2dNp,α∑

γ Np,γ

 dij(
g(P̃ , Q̃)2ij + a2

)3/2 δiαNp,j − δjαNp,i∑
γ Np,γ

− di0(
g(P̃ , Q̃)2i0 + a2

)3/2
[
δiαNp,0 − δ0αNp,i∑

γ Np,γ

+ δiα − Np,i∑
γ Np,γ

]

+
dj0(

g(P̃ , Q̃)2j0 + a2
)3/2

[
δjαNp,0 − δ0αNp,j∑

γ Np,γ

+ δjα − Np,j∑
γ Np,γ

] .

(C.33)
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Because of this, our evaluated Hessian is allowed to take on a much simpler form. Since we

want Equation C.30 to only have terms that are first-order or lower in dNp,α, the only terms

in our Hessian that will contribute to our equation are the terms that are of zeroth order in

dNp,α. Therefore, our evaluated Hessian has the form:

∂2W

∂gij∂gkl

∣∣∣∣
g(P̃ ,Q̃)

= δikδjldij
a2(

g(P̃ , Q̃)2ij + a2
)3/2

− (δil − δik)di0
a2(

g(P̃ , Q̃)2i0 + a2
)3/2

+ (δjl − δjk)dj0
a2(

g(P̃ , Q̃)2j0 + a2
)3/2 .

(C.34)

Using this Hessian, we can show:(
∂2W

∂gij∂gkl

∣∣∣∣−1

g(P̃ ,Q̃)

· ∂W
∂gkl

∣∣∣∣
g(P̃+dP̃α,Q̃)

)
ij

=

dNp,α∑
γ Np,γ

∑
k>l>0

H(g(P̃ , Q̃))−1
ij,klGα(g(P̃ , Q̃))kl,

(C.35)

where

Gα(g(P̃ , Q̃))ij =
dij(

g(P̃ , Q̃)2ij + a2
)3/2 δiαNp,j − δjαNp,i∑

γ Np,γ

− di0(
g(P̃ , Q̃)2i0 + a2

)3/2
[
δiαNp,0 − δ0αNp,i∑

γ Np,γ

+ δiα − Np,i∑
γ Np,γ

]

+
dj0(

g(P̃ , Q̃)2j0 + a2
)3/2

[
δjαNp,0 − δ0αNp,j∑

γ Np,γ

+ δjα − Np,j∑
γ Np,γ

]
,

(C.36)
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and

H(g(P̃ , Q̃))ij,kl = δikδjl
dij(

g(P̃ , Q̃)2ij + a2
)3/2

− (δil − δik)
di0(

g(P̃ , Q̃)2i0 + a2
)3/2

+ (δjl − δjk)
dj0(

g(P̃ , Q̃)2j0 + a2
)3/2 .

(C.37)

The inverse of this matrix can be computationally evaluated.

For i > j > 0, we can write the perturbed optimal pseudo-flow matrix as:

g′(P̃ + dP̃α, Q̃)ij = g(P̃ , Q̃)ij +
δiαNp,j − δjαNp,i

(
∑

γ Np,γ)2
dNp,α

− dNp,α∑
γ Np,γ

∑
k>l>0

H(g(P̃ , Q̃))−1
ij,klGα(g(P̃ , Q̃))kl.

(C.38)

It can then be shown using Equation C.20 for i > 0 that the form of g′(P̃ + dP̃α, Q̃)i0 is:

g′(P̃ + dP̃α, Q̃)i0 = g(P̃ , Q̃)i0 +
dNp,α∑
γ Np,γ

(
δiα − Np,i∑

γ Np,γ

)

−
i−1∑
j=1

[
δiαNp,j − δjαNp,i

(
∑

γ Np,γ)2
dNp,α − dNp,α∑

γ Np,γ

∑
k>l>0

H(g(P̃ , Q̃))−1
ij,klGα(g(P̃ , Q̃))kl

]

+
n−2∑

j=i+1

[
δjαNp,i − δiαNp,j

(
∑

γ Np,γ)2
dNp,α − dNp,α∑

γ Np,γ

∑
k>l>0

H(g(P̃ , Q̃))−1
ji,klGα(g(P̃ , Q̃))kl

]
.

(C.39)

Simplifying the summations, we find:

g′(P̃ + dP̃α, Q̃)i0 = g(P̃ , Q̃)i0

+
dNp,α∑
γ Np,γ

(
δiα

Np,0 + Np,n−1∑
γ Np,γ

− (δα,0 + δα,n−1)
Np,i∑
γ Np,γ

)

+
dNp,α∑
γ Np,γ

∑
k>l>0

Gα(g(P̃ , Q̃))kl

[
i−1∑
j=1

H(g(P̃ , Q̃))−1
ij,kl −

n−2∑
j=i−1

H(g(P̃ , Q̃))−1
ji,kl

]
.

(C.40)

Using these equations, we can finally determine the first-order derivatives of the pseudo-flow
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matrix for i > j > 0:

dg(P̃ , Q̃)ij
dNp,α

=
δiαNp,j − δjαNp,i

(
∑

γ Np,γ)2
− 1∑

γ Np,γ

∑
k>l>0

H(g(P̃ , Q̃))−1
ij,klGα(g(P̃ , Q̃))kl, (C.41)

and for i > j = 0:

dg(P̃ , Q̃)i0
dNp,α

=
1∑

γ Np,γ

(
δiα

Np,0 + Np,n−1∑
γ Np,γ

− (δα,0 + δα,n−1)
Np,i∑
γ Np,γ

)

+
1∑

γ Np,γ

∑
k>l>0

Gα(g(P̃ , Q̃))kl

[
i−1∑
j=1

H(g(P̃ , Q̃))−1
ij,kl −

n−2∑
j=i−1

H(g(P̃ , Q̃))−1
ji,kl

]
.

(C.42)

If we we only needed the first-order derivatives, this method would provide a decent

enough approximation. However, to calculate the Hessian, we would need to compute the

derivative of these formulas, which is where we encounter a problem. If we were to take

the exact derivative of this approximate derivative, we would find that the resulting Hessian

would not be symmetric. The symmetry of Hessians is a property we heavily exploit in the

implementation of second-order automatic differentiation. To properly calculate this Hessian

would require us to take the limiting behavior of iterating the true optimal flow matrix

g′(P̃ + dP̃ , Q̃) into Equation C.30 infinitely many times, where calculating one iteration is

already computationally intensive.



APPENDIX D

USING LARGE SOFTENING LENGTHS

Since small softening lengths seem to be the cause of the high turbulence, a larger softening

length would smooth out our likelihood surface, making it more navigable. Using a larger

softening length, however, necessarily sacrifices the accuracy of our gravitational forces within

the core of the progenitor, a keystone feature of N -body. An optimal softening length in

this context would therefore need to be large enough to produce smooth likelihood surfaces,

but small enough as to not sacrifice too many of the close body-body interactions within the

progenitor’s core. Looking at Figure 5.1, we note that the turbulence of the system starts

to grow rapidly when the softening length becomes smaller than 0.01 kpc for a progenitor

with a baryonic scale radius of 0.2 kpc.

To quantify how inaccurate our gravitational forces would become using such a soften-

ing length, let us look at a body at the center of a sample Plummer sphere with scale radius

a and mass M . We can approximately represent the magnitude of the total acceleration felt

on the body aG(R) from bodies within radius R of it using the following formula:

aG(R) = 4πQ

∫ R

0

r2
ρ(r)

r2
dr = 4πQ

∫ R

0

ρ(r)dr =
3MQ

a3

∫ R

0

(
1 +

r2

a2

)−5/2

dr. (D.1)

Q in this equation is a form factor that represents the angular perturbation in the distribution

of bodies arranged in a Plummer sphere. If we had a perfectly isotropic distribution of bodies,

Q would equal zero. Integrating Equation D.1, we find:

aG(R) =
MQ(3a2R + 2R3)

a2(a2 + R2)3/2
. (D.2)

We treat the softening length ls essentially as the distance by which two bodies no longer

exert any force on each other. We can therefore approximate the fraction of the total force

on a body in the center of the Plummer sphere using the following equation:

aG(ls)

aG(∞)
=

ls(3a
2 + 2l2s)

2(a2 + l2s)
3/2

. (D.3)

Plugging in ls = 0.01kpc and a = 0.2kpc, we find that such a softening length would reduce

the forces within the center of the progenitor by about 7.5%. While this level of accuracy
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might appear reasonable, we must remember that uncertainties within our acceleration cal-

culations quickly grow and propagate due to the vast number of acceleration computations

that occur within an N-body simulation. For reference, our simulations require double pre-

cision floating points to avoid the uncertainties that crop up when computing with single

precision numbers. Therefore, the 7.5% reduction in accuracy is far too steep a cost to pay

for lower turbulence in the likelihood score.


