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ABSTRACT

We have developed a method for estimating the properties of the progenitor dwarf galaxy

from the tidal stream of stars that were ripped from it as it fell into the Milky Way. In

particular, we show that the mass and radial profile of the progenitor dwarf galaxy of the

Orphan Stream, including the stellar and dark matter components, can be reconstructed from

the distribution of stars in the tidal tail it produced. This method can be used to estimate

the dark matter content in dwarf galaxies without the assumption of virial equilibrium that

is required to estimate the mass using line-of-sight velocities.

We use N-body simulations to create a two component dwarf galaxy, initially in virial

equilibrium, and place it in orbit around a published static model of the Milky Way Galaxy.

The distribution of stars in the resulting tidal debris stream is compared to the actual distri-

bution of stars along the Orphan Stream, using a comparison metric specifically designed for

this problem. For purposes of testing the algorithm, we simulate the ”actual” distribution

of stars along the Orphan Stream using reasonable dwarf galaxy parameters and a different

random seed, so that we know whether our algorithm is able to reconstruct the dwarf galaxy

given only observable information about the resulting tidal stream. The algorithm fits the

dark matter mass, dark matter radius, stellar mass, radial profile of stars, and orbital time.

Our simulations assumed that the Milky Way potential, dwarf galaxy orbit, and the form of

the density model for the dwarf galaxy are known exactly.

We use MilkyWay@home, a 0.8 PetaFLOPS distributed supercomputer, to optimize

our dwarf galaxy parameters until we arrive at a best-fit to the Orphan Stream data. We

show that we have been able to recover the parameters used in the creation of a simulated

tidal debris stream for both the baryonic and dark matter components. This is accomplished

even when the dark matter component extends well past the half light radius of the dwarf

galaxy progenitor, proving that we are able to extract information about the dark matter

halos of dwarf galaxies.
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CHAPTER 1

Introduction

1.1 Dark Matter in Dwarf Galaxies

The first concrete evidence of dark matter came from Vera Rubin’s study of galactic

rotation curves. Instead of finding the expected Keplerian decline in the rotation speeds of

stars far from the center of the host galaxy, she observed that the rotation curves were fairly

flat. This indicated that the stars being observed were embedded in an extended halo of

unseen matter. Her research showed that large amounts of this ‘dark matter’ was needed

to keep spiral galaxies from flying apart due to their high rotation speeds. Further evidence

came from gravitational lensing measurements, which looks at the the way light is bent

around large concentrations of mass. Gravitational lensing measurements of galaxy mergers

such as the Bullet Cluster, among others, show that the majority of the mass is not in the

areas inhabited by stellar mass (Paraficz et al., 2016; Bradač et al., 2008). It is now known

that dark matter accounts for the majority of the mass in the Universe.

Since the discovery of dark matter, scientists have searched for the elusive constituent

particles. These searches generally fall under two categories: direct and indirect searches. Di-

rect dark matter detection searches look for any possible interactions between theorized dark

matter candidates and ordinary matter. Such experiments include The Large Underground

Xenon experiment (LUX), XENON100, and XENON1T (Akerib et al., 2017; Xenon100 Col-

laboration et al., 2012; Aprile et al., 2016), which look for nuclear recoil interactions with

xenon atoms caused by the popular dark matter candidate, the Weakly Interacting Mas-

sive Particle (WIMP); and DM-Ice, which uses sodium iodide crystals to look for an annual

modulation of WIMP signals caused by the Earth moving with respect to the Galaxy (Jo &

DM-Ice Collaboration, 2016), among others.

Indirect detection searches look for the byproducts of interactions between dark matter

and ordinary matter, such as the products of annihilation or decay. One possible product of

decay or self-annihilation is neutrinos. Excess neutrino production is expected to occur in

areas where dark matter may exist with a high density, and thus may readily interact with

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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itself. These areas include the center of the Sun, the Galactic center, the Galactic halo, and

dwarf galaxies (Aartsen et al., 2015). One of the goals of the The IceCube Neutrino Obser-

vatory is to find excess muon neutrino production from the Galactic center (Aartsen et al.,

2015). Another common search is for excess gamma rays, also theorized to be a product of

dark matter interactions and annihilation. A goal of The Fermi Gamma-ray Space Telescope

(GLAST) is to look for excess gamma rays from the Galactic center. In fact, such a signal

was detected, and is known as the Galactic center extended source (Hooper & Goodenough,

2011; Abazajian et al., 2014). However, many attribute the excess gamma rays to a large

population of millisecond pulsars (Arca-Sedda et al., 2018), cosmic ray bursts (Cholis et al.,

2015), young gamma-ray pulsars (O’Leary et al., 2015), or the stellar population of the

central Galactic bulge (Macias et al., 2018).

As we have mentioned, prime targets for dark matter indirect detection experiments

include dwarf galaxies. The Milky Way halo is made up of a large number of dwarf galaxies,

globular clusters, tidal streams, and other substructures (Newberg & Carlin (2016), p. 87).

Dwarf galaxies in particular are thought to have large amounts of dark matter while contain-

ing few sources of background gamma rays. Therefore, gamma ray production attributed to

dark matter interactions may be easily observable. Some dwarf galaxies are so-called ultra-

faint dwarf galaxies, which have the largest mass to light ratio, the ratio of the estimated

total mass to the luminous mass, of any known structures. This makes them especially prime

targets for indirect dark matter detection experiments, and have been used in recent years

as probes to place limits on dark matter particle properties (Bartels et al., 2016; Lee et al.,

2016).

Ultrafaint dwarf galaxies are also important to cosmological model simulations, which

simulate the formation of the Universe. These simulations often have trouble reconciling

their predictions with observations at small scales, known as the ‘small scale’ problems (Bull

et al., 2016). For example, these simulations predict a universal radial distribution that is

centrally peaked, or cuspy, where observations tend to find shallower, or cored, distributions

(Bull et al., 2016). Furthermore, if dwarf galaxies are found to have very little or no dark

matter at all then they may be reclassified as tidal dwarfs, structures that were ‘kicked out’

by galaxy mergers. This would explain why many dwarf galaxies are found to orbit in planes

around both the Milky Way and Andromeda, providing a possible solution to the satellite

planes problem Bull et al. (2016). This would, in turn, worsen the missing satellite problem
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– the overabundance of predicted Milky Way satellites by these simulations as compared

with the number observed (Bull et al., 2016). Therefore, it is equally vital knowing both the

mass content and radial distribution of ultrafaint dwarf galaxies.

Estimates of the total mass of ultrafaint galaxies have been shown many times to be

greatly overestimated. The total mass of these galaxies are often determined using measures

of their velocity dispersion, and assuming that they are in equilibrium. If only the line-of-

sight dispersion is known, then the mass estimates can be inaccurate (Gilmore et al., 2007;

Strigari et al., 2007). Masses can also be derived by radial velocities (Wolf et al., 2010).

However, the usefulness of this method is limited to cases where mass follows light. The

velocity dispersion measures only the mass within the radius where the stars are measured,

and thus depends on the radial distribution of the dark matter. Mass estimates from line-

of-sight velocities will systematically overestimate the total mass of a galaxy if it is in the

process of tidally disrupting. If a dwarf galaxy is undergoing tidal disruption, it is inher-

ently not in virial equilibrium, and thus assuming equilibrium can lead to erroneous mass

estimates. Furthermore, measures of the velocity dispersions follow the assumption that

spectroscopically studied member stars are not part of binary systems. Such binary stars

can artificially inflate the measured velocity dispersion of dwarf galaxies because they can

be misinterpreted as single stars (McConnachie & Côté, 2010). When this occurs, the entire

orbital velocity of the star, instead of just a component, is attributed to its rotation around

the host galaxy, indicating a much higher mass enclosed within its orbit. Also, studies have

shown that the measured velocity dispersions of objects that are almost fully disrupted, or

close to apogalacticon, could be an order of magnitude or higher than equilibrium values

(Smith et al., 2013; Blaña et al., 2015). This could be due to stars that have been tidally

stripped from the progenitor but remain close enough to the remnant core to be mistaken

as bound stars by observers.

There have been several cases where the estimated masses of ultrafaint galaxies were

shown to be inaccurate because the target galaxy is in the process of tidally disrupting, or

stars used to measure the velocity dispersion were found to be part of a binary system. Segue

1, initially identified as a globular cluster (Belokurov et al., 2007), was originally found to

have an estimated mass to light ratio of 1000:1 (Geha et al., 2009). However, its stars were

found to have similar properties in kinematics and photometry as the stars of the Sagittarius

dwarf tidal stream, making it likely that it was a dwarf galaxy satellite of the Sagittarius
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dwarf galaxy, and in the process of tidally disrupting (Niederste-Ostholt et al., 2009). The

claim of a high mass-to-light ratio has been called into questions by Domı́nguez et al. (2016),

who found a possible orbit for Segue 1 in which a satellite with no dark matter at all will

produce the observed line-of-sight velocity dispersion.

Similarly, Triangulum II was estimated to be the most dark matter dominated galaxy

known (Kirby et al., 2015), but a star used in the velocity dispersion calculation was later

found to be in a binary system, greatly reducing the mass estimate and changing its classifi-

cation to a star cluster or tidally stripped dwarf galaxy (Kirby et al., 2017). Further studies

by (Martin et al., 2008) showed that ultrafaint galaxies are elongated, suggesting tidal disrup-

tion as a likely explanation. These cases illustrate the need for a new method for determining

the dark matter content of dwarf galaxies without making any of the assumptions discussed

above.

We present an algorithm that can measure the dark matter content of dwarf galaxies

without the need to assume equilibrium, and is independent of the presence of binary stars.

The algorithm uses N-body simulations to model current stellar density distributions of a

tidal stream, recovering parameters of the progenitor that inform us of the matter compo-

sition and radial distribution of both baryonic and dark matter. This method requires only

(l,b) sky coordinate data of tracer stars from the tidal stream. As we will show, we have

been able to recover parameters used to create simulated tidal streams. This includes the

remarkable ability to recover the dark matter properties outside of the half-light radius.

1.2 Overview

We developed a method to probe the mass and radial extent of the dark matter content

of dwarf galaxies. Instead of assuming equilibrium conditions in these galaxies, we look at

dwarf galaxies we know to be in the process of tidal disruption. These galaxies are currently

in the process of merging with the Milky Way galaxy, producing tidal streams of stars. Tidal

streams show promise for being very useful as probes of the Milky Way potential, because

we know that all of the stars in the stream were once located within the same progenitor.

Therefore, using tracer stars along the stream can help characterize the orbits they have

traversed.

Using a previously published Milky Way Galaxy model whose form and parameters

lead to a best fit orbit to the Orphan Stream, we optimize the parameters of the dwarf
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galaxy progenitor until we create a simulated tidal stream similar to that of the Orphan

Stream. This is done using N-body simulations to constrain the dark matter content within

dwarf galaxies by comparing a simulated tidal stream distribution to data for a particular

tidal stream. The simulated tidal stream is created by first generating a dwarf galaxy in

equilibrium and then evolving it through an orbit around the Milky Way. Although we plan

to relax these limitations in the future, we currently assume a fixed Milky Way potential, and

a dwarf galaxy orbit that was fit to the position and line-of-sight velocities along the tidal

stream. The simulated progenitor dwarf galaxy is generated with two separate Plummer

model density profiles for the stars and the dark matter and comprises of N self-interacting

bodies. The dwarf galaxy is then evolved through a fixed Milky Way potential and the

resulting simulated tidal stream is compared with an actual tidal stream of stars in the

Milky Way halo. The properties of the dwarf galaxy from which the tidal stream formed are

determined by varying the simulation parameters until the simulated and observed streams

match.

We have chosen the Orphan Stream because estimates of the luminosity of its progenitor

galaxy indicate that it may have been an ultrafaint dwarf galaxy (Belokurov et al., 2007;

Sales et al., 2008; Grillmair et al., 2015), making it an ideal choice. Furthermore, we have

access to stellar data, the Milky Way model, and orbit from Newberg et al. (2010). Together,

using the Orphan Stream allows us to begin with an idealized case for optimizing the dwarf

galaxy parameters, in which the Milky Way galaxy potential and dwarf galaxy orbit are

known exactly.

The theoretical model used for our dwarf galaxies is comprised of two components, one

to represent stars and the other to represent dark matter. When the model is turned into

a simulated dwarf galaxy comprised of bodies, the bodies of each component are allowed to

interact with each other and with the fixed Milky Way potential gravitationally.

At the end of the simulation we create a histogram of the simulated stellar density as a

function of angle along the orbit that will be compared with the observed density distribution

of stars. Since dark matter cannot be directly observed, it cannot be compared directly with

observations. However, the ‘unseen’ dark matter component influences the evolution of the

visible matter and the formation of the tidal debris stream. Therefore, properties of the dark

matter is inherently encoded in the evolution of the baryonic matter.

Using stellar stream data, a similar histogram can be made to represent the actual tidal
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stream. These histograms can then be compared to determine the ‘likelihood’ that they are

the same. We have developed a sophisticated comparison metric which measures how good a

match the simulated histogram is to the data. We optimize the orbital time and parameters

in the dwarf galaxy model to obtain the most similar histograms. The parameters used to

create the simulated dwarf galaxy can be optimized to maximize the likelihood measure. This

optimization is done using a Differential Evolution algorithm, run on a powerful distributed

supercomputer, MilkyWay@home.

In this thesis, we will begin with an overview of our simulations, describing the gen-

eral setting. We then give a brief description of the previously published Milky Way galaxy

model, and progenitor dwarf galaxy orbit used. We follow this with a theoretical break down

of the dwarf galaxy model, how we implemented this theoretical framework in generating a

simulated dwarf galaxy, and the tests we performed on our simulated dwarf galaxy imple-

mentation. Next, we describe the other various parameters needed to make the simulations

work. We then move onto the comparison algorithm, with a description of how we create

the histograms from simulated data, and each of the three part metric used for comparison,

how they work and their role in the over all comparison likelihood. We conclude this chapter

with how this is used in practice. We then describe the tidal stream under investigation, the

estimations we use, and how we convert stellar data into a form usable in our optimizations.

Finally, we present the results from our optimizations, followed by our concluding remarks

and plans for future work. In the appendices are detailed descriptions of the parameter

files used for the N-body code package and instructions for usage, several derivations behind

equations presented throughout this text, descriptions of previous methods, and results from

using the velocity dispersion instead of stream width to constrain the mass of the progenitor

satellite.



CHAPTER 2

N-body Simulations - External Potential and Progenitor Orbit

As mentioned in the introduction, we perform N-body simulations in order to constrain the

dark matter content of dwarf galaxies. We describe here what an N-body simulation is, and

the setting in which our simulations are performed. In describing the setting, we will give

a complete description of our Milky Way model, our choice of dwarf galaxy orbit and the

input parameters for our simulation.

In a general sense, an N-body simulation is a method for finding the numerical solution

to a many-body problem. The objects here are given some initial set of positions and

velocities in standard Cartesian space. The simulation then calculates the final positions

and velocities of each object. The objects can interact with each other and with their

surroundings. In this way, the ‘simulation’ is the numerical solution to the integrals of

motion for these objects. In our case, the N objects are used to model a dwarf galaxy, and

interact with each other and with their environment gravitationally, adhering to Newtonian

physics. The environment is a large central gravitational potential well, representing the

Milky Way Galaxy. The environment is also made up of the much smaller potential wells

of the other objects. Running the simulation involves placing the dwarf galaxy in orbit

around the Milky Way potential. From there, the interactions between each body and its

environment are calculated and integrated for some set amount of simulation time. Running

the simulation is the subject of an upcoming chapter.

It is also possible to represent the Milky Way Galaxy using bodies as other authors

have done (Chakrabarti & Blitz, 2009; de la Vega et al., 2015). This would require a large

number of bodies, possibly in the millions, consuming a large amount of computational power

for every simulation. Since we are performing an optimization, which require thousands of

simulations, representing the Milky Way with bodies is not computationally feasible. We

therefore choose a static potential model for the Milky Way Galaxy, which has a fixed analytic

form.

The dwarf galaxy model requires several input parameters to determine the mass and

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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radial distribution of the baryonic (stellar) and dark matter components: the total mass and

a scale radius of each component. For the baryonic component, we specify the mass (MB)

and scale length (RB). We also specify two ratio parameters used to determine the mass

(MD) and scale length (RD) of the dark matter component. Since these input parameters

are altered by MilkyWay@home’s search algorithm during an optimization, ratio values are

used to determine the dark matter component properties in order to explore a larger range

of mass and scale length values with a narrower search range. The radius ratio (ξR) and

mass ratio (ξM) values are related to the dark matter parameters by:

RD =
RB

ξR
(1− ξR),

MD =
MB

ξM
(1− ξM).

(2.1)

In terms of the baryon and dark matter parameters, the ratios can also be written:

ξR =
RB

RB +RD

,

ξM =
MB

MB +MD

.

(2.2)

In order to represent the Milky Way Galaxy, we use a theoretical model comprised of

three components representing the Milky Way’s central bulge, disk and halo. Similar to the

dwarf galaxy, each of the three components requires several input parameters that determine

the mass and shape of the respective component. Furthermore, the orbit on which the dwarf

galaxy is placed is determined by a set of position and velocity coordinates that, along with

the Milky Way potential, fully characterize the orbit. We could simultaneously constrain

the dwarf galaxy, the Milky Way potential model, and the orbital parameters. However, for

now, we choose to use previously published parameters for the Milky Way model and orbit.

In the future when we adapt this algorithm to fit the Milky Way and orbit parameters,

we will need to fit additional data constraints such as line-of-sight velocity and stream

position, and include multiple tidal streams. These values are set in the parameter file,

which will be described in a later chapter, meaning these values can also easily be set as

input parameters to be altered in the optimization.

The Milky Way model parameters were chosen to be the same as those used to fit the

orbit for the Orphan Stream in Newberg et al. (2010). We also adopt the corresponding best
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fit orbital parameters given by Model 5 of Table 3 in Newberg et al. (2010). Therefore, the

only parameters being constrained are those of the dwarf galaxy and the time of evolution

along the orbit.

2.1 Galactic Potential

As stated above, the Milky Way Galaxy is represented using a static potential. Specif-

ically, the model chosen to represent the Milky Way is comprised of three components. Each

component is meant to represent a different part of the Milky Way, some of which are shown

in Figure 2.1.

Figure 2.1: A basic schematic of the Milky Way Galaxy highlighting the main
components adapted from Figure 1.1 of Newby (2013). It includes the central
bulge, the thin and thick disks, and the relative position of the sun. It also
points out the dark matter halo which surrounds the galaxy, an example of a
tidal stream (not to scale) and the many embedded globular clusters present in
the halo.

The model used to represent the Milky Way does not have this many details, however.

The first component represents the bulge; the second component represents the entire disk,

combining together the thin and thick disk in one model. The final component represents the

dark matter halo using a smooth potential. The many embedded globular clusters are not

individually represented, but such representation is possible. This will be further discussed
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in Section 9.1.

To describe the bulge, a spherically symmetric Hernquist model is used (Hernquist,

1990). This potential is given by:

Φbulge(r) = −GMbulge

r + d
, (2.3)

where d = 0.7 kpc is a scale length, and the mass Mbulge = 1.0 × 1011 M�(Law et al., 2005).

As previously stated, the thin and thick disk are represented by a single potential. However,

the disk is not spherically symmetric. Therefore, a cylindrical potential, the Miyamoto-Nagai

potential, was chosen to represent the disk. This is given by:

Φdisk(r) = − GMdisk√
R2 + (b+

√
z2 + c2)2

, (2.4)

where b = 6.5 kpc and c = 0.26 kpc are scale parameters, R is the cylindrical radius

(R = x2 + y2), and the mass Mdisk = 3.4 × 1010 M� (Law et al., 2005).

The exact mass of the dark matter halo is not known. Therefore, a potential model

with a parameter representing the mass is required. The logarithmic halo potential is such

a model, given by:

Φhalo(r) = v2
0 ln

(
1 +

r2

a2

)
, (2.5)

where v0 = 73 km/s (Newberg et al., 2010) is a scale velocity, and a = 12 kpc is a scale

parameter (Law et al., 2005). The scale velocity, as with many other halos with a similar

parameter, is determined from the rotation speed of stars at large radii with respect to the

Galactic center (Binney & Tremaine, 2006). This parameter is set so that the sum of the

three components of this Milky Way galactic potential yields those rotation speeds. The

potentials are in units of [Φ] =kpc2/Gyr2; a description of these units is given in Section 5.2.

When implemented in the simulation, the acceleration due to the above potentials are used,

descriptions of which are in Section 2.1.1. The final potential model for the Milky Way is

then the sum of these potentials:

ΦMW (r) = Φbulge(r) + Φdisk(r) + Φhalo(r), (2.6)

An important note here is that each potential component, and thus the combined model, is
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dependent only on the distance from the center of the Milky Way.

2.1.1 Accelerations Due to Milky Way Potentials

During the force calculations the potential equations are not used, but rather their

derivatives: the accelerations due to their respective potentials. The potentials are either

spherical or cylindrical but the positions and velocities are in Cartesian coordinates. There-

fore, when calculating the accelerations, they are calculated for each component in Cartesian

space. The parameters used below are the same as the parameters involved in the respective

potentials.

For the spherical Hernquist model, the accelerations have a simple form and are the

same for each component. The accelerations for each component are given by:

~a = − ~xM

r(r + d)2
. (2.7)

The Miyamoto-Nagai disk is not spherically symmetric; the z-component of the ac-

celeration is different from the others. For the Miyamoto-Nagai disk, the accelerations are

given by:


ax

ay

az

 = − M[
x2 + y2 +

(
b+
√
z2 + c2

)2
] 3

2


x

y

z b+
√
z2+c2√
z2+c2

 . (2.8)

The logarithmic halo is spherically symmetric. Therefore the components of the accel-

eration are all the same. However, there are some models which prefer an oblate or prolate

halo (Cole & Lacey, 1996; Jurić et al., 2008; Law & Majewski, 2010). Therefore, a parameter

is introduced into the z-component that can modify the shape to accomplish either model

choice. For the log halo the components of the acceleration are given by:
ax

ay

az

 = − 2v2
0γ

2

γ2(x2 + y2 + a2) + z2


x

y

z/γ2

 , (2.9)

where γ is the ‘flattening’ parameter. Since we want a spherically symmetric halo, this

parameter is set to 1. Since the accelerations are vectors, each Cartesian component is
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added separately to the total acceleration of each body.

2.2 Choice of Orbit

In general an orbit is defined by a position in space (3 parameters), a velocity within

that space (3 more parameters), and a potential through which the particle will travel. Since

the particle can be at any place along the one-dimensional orbit, the orbit can be defined

by 5 parameters. Rather than start the dwarf galaxy at all possible positions, velocities,

and times in the past, we would like to choose only those positions and orbital times that

return the debris to the location we currently see it, on the orbit it is currently traveling.

To achieve this, at the beginning of the simulation we perform a ‘reverse’ orbit calculation:

a single body is placed at the current debris coordinates, but with the sign of the velocities

reversed. The orbit is then integrated for a variable evolution time (this is one of the five

adjustable parameters that are fit) and the final positions and velocities, with their sign again

reversed, recorded. The phase space coordinates of this body is then taken as the center of

mass position and momentum of the dwarf galaxy. The integration is done using the same

method of integration as with the N-body simulations and will be described in Section 5.1.

The dwarf galaxy is then placed at this position on the backwards orbit. The dwarf

galaxy then evolves along the forward orbital path. With an initial position given by

(l, b, R) = (218◦, 53.5◦, 28.6 kpc) with velocity (vx, vy, vz) = (−156, 79, 107) kpc Gyr−1, simi-

lar to that given by Model 5 of Table 3 in Newberg et al. (2010), the orbit and the approximate

ending position of the tidal debris is fixed. As we will see, the integration time in the forward

direction will need to be adjusted slightly compared to the reverse orbit in order to put the

debris in exactly the observed location.



CHAPTER 3

Dwarf Progenitor Model

3.1 Theoretical Model

We choose a dwarf galaxy model that can represent the full spectrum of possible mass-

to-light ratios, i.e., from little to no dark matter as in globular clusters to heavily dark

matter dominated as expected in ultrafaint galaxies. The model must be able to represent

both situations by adjustment of the model parameters. This allows us the freedom to fit

the data without previous knowledge of how much dark matter should be present in the

progenitor.

For our model, we adopt a double Plummer potential profile - one representing dark

matter and one representing baryonic matter. The Plummer model is not the most realistic

profile for modeling dwarf galaxies, and is often used to model globular clusters (Heggie

& Hut, 2003); it was chosen for its simplicity and ease of implementation. As we will

describe further later, the probability distribution function for the Plummer model is known

analytically. Furthermore, the model lacks a singularity at r = 0 and the mass enclosed

quickly falls off for larger radii (Heggie & Hut, 2003). In future work, we plan to implement

a wider range of dwarf galaxy models.

To derive this model, we use the single Plummer density distribution and potential

(Plummer, 1911) as a starting point. This is a spherically symmetric model often used in N-

body simulations (e.g. Newberg et al. 2010, Law & Majewski 2010,). The Plummer density

distribution and potential (Plummer, 1911) is given by:

ρ(r) =
3M

4πa3

(
1 +

r2

a2

)−5/2

, (3.1)

Φ(r) = −GM
a

(
1 +

r2

a2

)− 1
2

, (3.2)

where a is a scale length, M is the total mass, and r is some radius. This model is robust

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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enough to be extended to a two-component model. This is done by adding another term to

the single Plummer potential:

Φ(r) = −GMd

ad

(
1 +

r2

a2
d

)− 1
2

− GMb

ab

(
1 +

r2

a2
b

)− 1
2

, (3.3)

where the subscripts represent the dark matter (d) and baryonic matter (b) components and

ad and ab are the dark matter and baryonic matter scale lengths respectively. As a result of

the linearity of Equation 3.3, the spatial density distribution follows from Poisson’s equation

for gravity: ∇ ·Ψ = −4πGρ:

ρ(r) =
3Md

4πa3
d

(
1 +

r2

a2
d

)− 5
2

+
3Mb

4πa3
b

(
1 +

r2

a2
b

)− 5
2

. (3.4)

These two equations completely characterize the dwarf model being used. The parameters for

the dark matter and baryonic matter component allow for easy alteration of each component’s

mass and radial extent. Furthermore, the combined model maintains spherical symmetry.

This model represents the initial dwarf galaxy in our simulations, before any disrup-

tion. The bodies in the simulation must be assigned positions and velocities in a way as

to completely trace this initial potential model. In other words, the combined distribution

of the bodies in the initial simulated dwarf galaxy must be characterized by this potential

model.

Monte Carlo rejection sampling (von Neumann, 1951) is used to assign the body’s

coordinates in phase space. The positions are sampled and assigned first. These are then used

to assign velocities. The positions are sampled so that the overall radial density distribution

follows the correct theoretical form, and will be described in Section 3.2. The velocities are

assigned so that the structure of the dwarf galaxy is stable and in equilibrium as will be

described in Section 3.3.

3.2 Implementation – Assigning Radii

The positions are assigned by sampling the two components of Equation 3.4 separately

using their single Plummer density distribution. This is allowed because the density dis-

tribution is a linear combination of the two components. Sampling separately ensures a

proper spatial distribution for each component; the two components are stacked together

with a common center of mass. They not only follow their individual theoretical forms, but,
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together, follow the form for the combined density distribution, as will be demonstrated in

Chapter 4 where we discuss the testing of our algorithm.

The density distribution is spherically symmetric and a function of radius (Binney &

Tremaine, 2006). This means that sampling need only be done in one dimension. Cartesian

positions can be determined by first sampling for a radial magnitude, assigning each a ran-

domly oriented unit vector, and then taking the components. The density is not the function

actually sampled. The mass enclosed function, the integral of the density distribution, is

used to determine a radial magnitude (Binney & Tremaine, 2006). That is, the sampling is

performed under the curve

dM

dr
= 4πr2ρ. (3.5)

First a random radial magnitude, r, and a random number u from a uniform distribution

between [0,1] are chosen. If the condition r2ρ/(r2ρ)max > u is met, the radial magnitude is

accepted (von Neumann, 1951). Since the two components are sampled separately, the value

(r2ρ)max can be found analytically for each component. This value occurs at:

rmax =

√
2

3
a, (3.6)

where a is, again, the scale length of the respective component. This method allows us

to sample underneath the curve created by dM/dr, ensuring the values found are well dis-

tributed and representative of the function being sampled (von Neumann, 1951). Therefore,

at the end of the sampling routine, we have two sets of radii, one for each component, rep-

resentative of their respective density distributions. An example of this routine’s ability to

sample dM/dr is shown below. The accepted points are shown in green and the rejected

points in red. As the plot shows, all accepted points are below the curve, while all rejected

points are above the curve. This plot also highlights the main drawback of this method:

many points are rejected, which can severely slow the sampling routine. Depending on the

shape of the curve, the number of rejected points can far outnumber the number of accepted

points.
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Figure 3.1: An example of the results of rejection sampling. The black line
shows the function r2ρ(r), where ρ(r) is a single Plummer density function, that
is being sampled. The green dots underneath the curve are the values that have
been accepted and the red dots above the curve are the values that have been
rejected. As the plot shows, the accepted values are a good sampling of the
function.

The method for determining positions from the radius is the same as that used for

determining velocities from orbital speeds. Therefore, it will be discussed at the end of this

chapter.

3.3 Implementation – Assigning Velocity

Each body must also be assigned an orbital speed. This is a significantly more com-

plicated process. The stability of the simulated dwarf galaxy relies heavily on the velocity

distribution. If the assigned speeds are too high the bodies will fly off. If too low, the bodies

will collapse to the center. In either case, the simulated dwarf galaxy will quickly decay.

Instead, we want an object that maintains its general shape and distribution if it is left to

evolve in empty space, i.e., no external potentials. For this to occur, the bodies must have

stable orbits around the dwarf’s center of mass.
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We cannot assign velocities to each component separately as we did with positions. The

velocities are determined using a probability distribution (Binney & Tremaine, 2006; Aarseth

et al., 1974), described in Section 3.3.1. The two component Plummer model probability

distribution function is not a simple sum of the single components’ probability distributions

as the combined density distribution is a simple sum of the one component density distribu-

tions. Furthermore, as we will see in Section 3.3.1, the probability distribution is a function

of the density and potential, and cannot be separated into a linear combination of the single

component densities and potentials.

In fact, if we were to attempt to assign velocities to each component separately, when

the two components are brought together, the combined structure would be inherently un-

stable. This is because there will suddenly be more mass located within the orbital radius

for each body. The orbits for these bodies would decay leading to a runaway process as the

entire structure rapidly decays, or even violently blows apart. This was seen in previous

attempts at creating a two component structure.

3.3.1 Distribution Function

A probability distribution function, when integrated in phase space, produces the prob-

ability an object will be found in that area of phase space (Binney & Tremaine, 2006). The

distribution can be reduced to a function of the body energy, model density and poten-

tial. The spherically symmetric probability distribution we use is (as taken from Binney &

Tremaine (2006))

f(ε) =
1√
8π2

∫ ε

0

dΨ√
ε−Ψ

d2ρ

dΨ2
, (3.7)

where Ψ(r) = −Φ(r), is the combined model potential, ρ(r) is the model density distribution,

and the energy, ε, is defined as ε = −1
2
v2 − Φ(r). For a single component Plummer model,

the integral in Equation 3.7 has an analytic solution, given by:

f(ε) =
24
√

2

7π3

a2

M4
ε7/2, (3.8)

where M is the total mass, and a is the scale radius of the model. The simplicity of this

equation is another reason the Plummer model is so widely used. Sampling the distribution

function for a single component Plummer sphere is often very fast and the algorithm is
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simple to implement. For a two component model, however, the integral in Equation 3.7

must be solved numerically, which is a decisively slower process. A theoretical description

and the implementation is to follow.

3.3.2 Calculating Derivatives

Since the density, ρ(r), and potential, Ψ(r), equations are both one dimensional func-

tions of radius, the integral of Equation 3.7 is converted to integrate over radius. This is done

by expanding the derivative in the integrand in terms of r. The first derivative is expanded

as:

dρ

dΨ
=

dρ

dr

dr

dΨ
=

dρ

dr

(
dΨ

dr

)−1

. (3.9)

The first derivative is simple enough, and provides us with footing to expand the second

derivative. The derivative with respect to potential, d
dΨ

, is treated as an operator that, for

a function of radius:

df(r)

dΨ
→ df(r)

dr

(
dΨ

dr

)−1

. (3.10)

Using this operator on the first derivative we find,

d

dΨ

[
dρ

dr

(
dΨ

dr

)−1
]

=
d

dr

[
dρ

dr

(
dΨ

dr

)−1
](

dΨ

dr

)−1

. (3.11)

This becomes:

d2ρ

dΨ2
=

[
d2ρ

dr2

(
dΨ

dr

)−1

−
(

dΨ

dr

)−2
d2Ψ

dr2

dρ

dr

](
dΨ

dr

)−1

. (3.12)

The differential dΨ is also changed to dr: dΨ → g(r)dr, where g(r) is the derivative of Ψ

with respect to r. This is done by multiplying the integrand by dΨ/dr. While this may seem

incorrect, when applied, the differential, ‘dr’, is not actually present, only g(r). Therefore,

multiplying by g(r) is the same as changing the differential from dΨ to dr. The final integral

is then given by:
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f(ε) =
1√
8π2

∫ ε

0

g(r)dr√
ε−Ψ(r)

[
d2ρ

dr2

(
dΨ

dr

)−1

−
(

dΨ

dr

)−2
d2Ψ

dr2

dρ

dr

](
dΨ

dr

)−1

. (3.13)

3.3.3 Calculating Limits of Integration

The limits of integration must also be converted to radial limits, r′lower and r′upper, by

solving for the radius, r′, at which the potential is equal to the energy: Ψ(r′) = ε′, where ε′

is either of the current limits of integration, ε′lower = 0 and ε′upper = ε.

At the lower limit, Ψ(r′lower) = 0 when r′lower =∞. However, the integrand has a well

defined peak and quickly decreases to zero, allowing for an easy approximation for this limit.

This is shown in Figure 3.2.

At the upper limit, Ψ(r′upper) = ε, and r′upper is determined by finding the root of

Ψ(r′upper) − ε = 0. The root is found numerically using a bisection root finding algorithm

implemented specifically for this case. This turns the integral into:

f(ε) =
1√
8π2

∫ r′upper

∞

g(r)dr√
ε−Ψ(r)

[
d2ρ

dr2

(
dΨ

dr

)−1

−
(

dΨ

dr

)−2
d2Ψ

dr2

dρ

dr

](
dΨ

dr

)−1

. (3.14)
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Figure 3.2: Plots of the integrand of the distribution function for different en-
ergies, ε = Ψ(r) − 1/2v2, as a function of r′, the value integrated over. Each plot
shows a different radius, r, each a fraction of the sum of the scale radii, (ab + ad),
of the dwarf galaxy components. The upper left is 0.1(ab + ad), the upper right
is 0.25(ab + ad), the lower left is 0.5(ab + ad), the lower right is 0.75(ab + ad). Each
curve shows a different fraction of the escape velocity for that r. In each case,
the function quickly goes to zero.
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3.3.4 Numerical Formulas

There are several numerical methods used in calculating and sampling the distribution

function. They will not be derived because they are all well established numerical methods.

However, they are important to the replication of this algorithm and thus will be listed here.

As mentioned above, the upper limit of integration is found using a bisection root find-

ing algorithm. This method searches for a root within an interval provided to the algorithm.

The search interval was determined in a way to ensure there existed a root within. Again,

we are looking for the r′ that satisfies Ψ(r′) = ε. The search interval, (r′lower, r
′
upper), should

satisfy the requirement Ψ(r′lower) > ε and Ψ(r′upper) < ε. Since ε = Ψ(r) − 1/2v2, and Ψ(r)

is a positive quantity, it follows that ε ≤ Ψ(r). It then also follows that lower energies cor-

respond to smaller values of Ψ(r′), and thus larger values of r′. Therefore, the lower bound

is set to r′lower = 0 where the first inequality is definitely satisfied. The upper bound is first

given an initial value and is iteratively increased until Ψ(r′upper) < ε.

For the first and second derivatives, a five point central difference approximation is

used in order to ensure accuracy. For the first derivative, this is given by:

f ′(x) ≈ f(x− 2h)− 8f(x− h)− f(x+ 2h) + 8f(x+ h)

12h
, (3.15)

and the second derivative is given by

f ′′(x) ≈ −f(x+ 2h) + 16f(x+ h)− 30f(x) + 16f(x− h)− f(x− 2h)

12h2
, (3.16)

where h is the step size and is set to h = 0.001 in both cases. This value was determined to

work well for the functions involved: the density and potential. The integral is performed

using a 3-point Gaussian quadrature technique. This technique is based on the rule:

∫ b

a

f(x)dx ≈ b− a
2

n∑
i=1

wif

(
b− a

2
xi +

a+ b

2

)
, (3.17)

where wi are weights and xi are specific points, both of which can be looked up in tables,

and n=3. For our purposes, this formula is not applied over the entire integration range, but

over small increments. Therefore, if v2f(r) = f(x), what is actually implemented is given

by:
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∫ b

a

f(x)dx =
∑
i=0

∫ βi

αi

f(x)dx ≈
∑
i

c1

3∑
j=1

wjf (c1xj + c2) ,

c1 =
βi − αi

2
,

c2 =
βi + αi

2
,

βi − αi = h =

 (1.5a− a)/100 if αi < 1.5a

(b− 1.5a)/10 if αi > 1.5a
,

(3.18)

where h is an adaptive step size used to give better resolution to more significant parts of

the integrand, like the peaks in Figure 3.2. This normally occurs within 1.5a. The limits

of integration, α and β, are iterated in a way that allows for alteration of h during the

integration. The i sum is taken up to where the lower bound, α, exceeds b.

Finally, a max finder based on a golden section search is used to determine (v2f)max

for a given radius (Press et al., 2007).

3.3.5 Sampling Velocities

As we have shown, the distribution function can be reduced to a function of radius, r,

and velocity, v, by expansion of the derivatives and through the calculation of energy. The

dimensionality of the distribution function is further reduced by using the density distribu-

tions to first assign radius before assigning velocities. Since the spatial location has already

been determined, we need only generate the magnitude of the particle velocity and three

random numbers specifying the direction of the velocity unit vector as will be discussed in

the following section. The distribution function then becomes a one dimensional function of

velocity magnitude. Similar to the mass enclosed function for the positions, we choose the

magnitude of the velocity using the spherically symmetric distribution (Binney & Tremaine,

2006),

dN(v)

dv
= 4πv2f(v), (3.19)

where dN is the number of particles between v and v+ dv, and the same rejection sampling

technique as before. In this case, (v2f(v))max for the given radius is found numerically.
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3.4 Implementation – Determining Positions

We choose to make the dwarf galaxy isotropic in space. Therefore, the particle position

vector, ~x, and velocity vector, ~v, is determined by multiplying the magnitudes by a different

but random Cartesian unit vector on the unit sphere:

~x =|r|û1, (3.20)

~v =|v|û2. (3.21)

The unit vector is chosen by first selecting a vector, ~u = (ux, uy, uz), created from three

random numbers between [-1,1], such that

u2
x + u2

y + u2
z < 1. (3.22)

Then,

û =
~u√

u2
x + u2

y + u2
z

, (3.23)

is a unit vector that is randomly sampled over the surface of a unit sphere. The components

of the product vector are then taken as the Cartesian coordinates for the positions/velocities

of that body: by drawing the radial and velocity magnitudes from density and probability

distributions respectively, and the directions randomly, we achieve a system with the desired

density and velocity distributions but with random motions. Furthermore, such a method

allows for various types of body orbits.

3.5 Implementation – Assigning Body Masses

The number of baryonic and dark matter bodies is fixed for all simulation parameters:

half of the bodies are assigned to baryons and the other half as dark matter. Currently, we

use 20,000 bodies in the simulation, with 10,000 assigned to each component. The mass of

each component is split evenly between their respective bodies. The ratio between the dark

matter and baryonic matter component masses is altered by changing the mass assigned to

each component and thus their bodies.

Specifically, if mb,i is the mass of the ith baryonic body, mb,j is the mass of the jth
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baryonic body, such that i 6= j (and similarly for the dark matter component),

mb,i = mb,j 6=i, (3.24)

md,i = md,j 6=i. (3.25)

Every baryonic body has the same mass as every other baryonic body and every dark matter

body has the same mass as every other dark matter body. But, the mass of each components’

bodies, mb,i may not be the same as the masses of the other components’ bodies, md,i. The

only time they are the same is if the total mass of each component is the same. So, again,

if m is the mass of a body and M is the total mass of a component:

mb,i

 6= md,j if Mb 6= Md

= md,j if Mb = Md

, (3.26)

meaning, again, that the mass of a baryonic body has the same mass as a dark matter body

only if the total mass of the two components are the same. Therefore, a dwarf galaxy, for

example, with twice as much dark matter as baryonic matter would have Md/Mb = 2 and

md/mb = 2. This is our current method for assigning body masses and type in our algorithm.

Alternatively, the body masses could be set uniformly, each the same fraction of the

total mass of the dwarf galaxy, m = (Mb + Md)/N , where N is the total number of bodies

in the simulation. In this case, the combined density distribution, instead of the individual

densities, would be sampled. Each body, initially tagged as baryonic, would then be given

a chance to be tagged as dark matter. The ratio between the amount of dark matter and

baryonic matter would be realized by how many bodies are assigned as dark matter bodies

and how many are assigned as baryonic bodies. The bodies would be iterated over and

randomly tagged as dark matter until this was achieved. Therefore, for dwarf galaxies with

some dark to light mass ratio Md/Mb = ξ, the body masses would be equal, md = mb, and

the number of each type of body would be Nd/Nb = ξ. This method would, then, require an

entirely separate sampling process. In fact, this was the previous method of assigning body

masses and type.

The main problem with this method is highlighted when the ratio between dark matter

and baryonic matter becomes extreme. In those cases there will be very few bodies of one type

in the simulation. The bodies are still meant to represent the potential of that component,
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which require a fairly large amount of bodies, upwards of a few thousand to ten thousand.

Therefore, to account for extreme dark to light ratios, the total number of bodies in the

simulation would have to be extremely large, possibly in the hundreds of thousands, so

that when these situations occur, the number of bodies assigned to the less massive of the

components would still be enough to accurately represent the potential well. Even then,

there is still no guarantee that there would be enough bodies to properly represent the

potential well of that component. The amount of bodies needed would slow the simulation

considerably, making it unfeasible to run on client computers. It is for this reason that this

method was discarded and our current method adopted.

Our current method for assigning bodies allows us to fix the number of bodies to a

computationally reasonable value while still maintaining enough bodies in each component to

properly represent the potential well of that component and of the entire model. As we have

said, we currently use 20,000 bodies, with 10,000 for each component, as compared with the

over 100,000 bodies needed with the previous method. Furthermore, our current method does

not require the several iterations over the entire body list to randomly assign dark matter.

Also, the previous method requires us to sample the combined density distribution. In the

rejection sampling technique, as was previously discussed, the calculation of r2ρ(r)max is

required and would need to be found numerically as opposed to the analytic values currently

used. Therefore, our current method also reduces the number of calculations required in our

sampling, and simplifies the process. For these reasons, our current method is much more

feasible and all around more attractive.



CHAPTER 4

Testing the Dwarf Model

As the previous chapter shows, the dwarf galaxy creation algorithm is quite complex. There-

fore, we must test that the dwarf galaxy creation algorithm works correctly. We test our

dwarf galaxy creation algorithm by testing the physical properties of the simulated dwarf

galaxy in empty space. This means making sure the algorithm produces the correct distri-

butions in phase space, testing the stability of the dwarf galaxy, and checking whether or

not it is created in and maintains virial equilibrium when evolved in empty space.

First, the dwarf’s spatial and velocity distributions are compared to theoretical norms

when the dwarf galaxy is first created. This is repeated after a number of years of evolution

in empty space to test that the dwarf galaxy retains these distributions. The virial ratio,

the ratio of the total kinetic energy to total potential energy of the bodies in the dwarf

galaxy, is also measured. The virial theorem states that in order for the dwarf galaxy to be

in virial equilibrium, the virial ratio must be 2T/|U | = 1, where T is the total kinetic energy,

and U is the total potential energy. The virial ratio is calculated using two methods. This

measurement is done when the dwarf galaxy is first created, and after a number of years

of evolution in empty space, to test that the dwarf galaxy retains virial equilibrium. These

tests, together, show that the dwarf galaxy is created correctly. Repeating them over time

tests the stability. By stability, we mean that it retains, without significant deviation, the

initial spatial and velocity distributions, and equilibrium status.

We test two different models for the progenitor, one where mass follows light and one

with an extended dark matter profile. Since this thesis focuses on the Orphan Stream in

particular, in both cases, the parameters for the dwarf galaxy are adapted from Newberg

et al. (2010) for the best fit Plummer model, scale radius of rs = 0.2 kpc and total mass of

Mtotal ∼ 2.5 × 106M�, to the orbit of the Orphan Stream found in the same. In the first

dwarf model, the two components are given the same parameters. Their scale radii are both

set to 0.2 kpc, and the mass of each is one half of Mtotal, corresponding to a mass follows

light model of the dwarf galaxy as in Newberg et al. (2010). The second dwarf galaxy uses

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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the same values for the baryonic component. For the dark matter component of this model,

a scale radius of rs = 0.8 kpc and a mass of MDM ∼ 1 × 107M� is used. This corresponds

to a dark matter dominated dwarf galaxy with an extended dark matter halo as predicted

by some models.

While we present here only two dwarf models, the tests to be described have been

repeated over a large range of progenitor parameters. The results for each model was found

to closely agree with those shown here.

4.1 Phase Space Distribution

In order to test that the spatial distribution is assigned correctly, we can compare

the distribution created by the dwarf creation algorithm to theoretical expectations. First, a

dwarf galaxy is created with some test model parameters. The parameters used are not of the

most importance as long as they are realistic. The dwarf galaxy is allowed to evolve in empty

space for several evolution times, and the final body positions and velocities are recorded.

Using the positions and velocities of each body, the magnitude and angular components

of the positions and velocities are calculated and made into histograms. The theoretical

expectations come from the sampling function. As described in the previous chapter, the

mass enclosed function is sampled to assign positions. Dividing by the mass per particle, m,

yields the expected counts per histogram bin as a function of r, θ, and φ:

dN = 4πr2ρ(r)

m
sinθdrdθdφ, (4.1)

where ρ(r) is the combined model as given by Equation 3.4.

4.1.1 Testing Radial Distribution

The radial component of the position can be seen in Figures 4.1 and 4.2. The first

figure, Figure 4.1, shows the radial profile of a dwarf galaxy whose components have the same

parameters, and shows the radial distribution of each component over time. The second,

Figure 8.4, shows an example where the parameters of the two components are different.

In each, the theoretical distribution, r2ρ(r), is also plotted. As the figures show, the radial

distribution matches well with the theoretical expectation. After 4 Gyr of evolution, there

is a significant shift in the radial profile. This is due to relaxation of the bodies in the
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structure, reaching an equilibrium state. As we will show in Section 4.2, the dwarf galaxy

is created very close to equilibrium. As the dwarf galaxy evolves in empty space, the virial

ratio approaches one. However, as seen in Figures 4.1 and 4.2, the distribution maintains its

general shape after 4 gigayears of evolution.
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Figure 4.1: Plot of the radial distribution of each component for a dwarf galaxy
with a mass follows light model. The black line is the theoretical distribution
expected for each component. The dwarf is evolved in empty space. The top
row shows each component and the combined distribution initially. The second
row shows the distributions after 4 Gyr of evolution. After this evolution there
is some deviation from the initial and theoretical distributions but the general
shape remains.
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Figure 4.2: Plot of the radial distribution of each component for a dwarf galaxy
with an extended dark matter halo. The black line is the theoretical distribution
expected for each component. The dwarf is evolved in empty space. The top row
shows each component and the combined distribution initially. The second row
shows the distributions after 4 Gyr of evolution. After this evolution there is
also some deviation from the initial and theoretical distributions but the general
shape remains.
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4.1.2 Testing Velocity Distribution

As stated in the previous chapter, the theoretical form of the velocity distribution is

not known, as the probability distribution function cannot be solved analytically for the two

component case. The single Plummer model does have an analytical solution (Aarseth et al.,

1974), given by Equation 3.8, which can be used to create a velocity distribution. This is

also done by rejection sampling, as described in Section 3.3.5, but with use of the analytic

equation for the distribution function.

From the linearity of Equations 3.3 and 3.4, it can be seen that if the masses and scale

radii of the two components were identical, the equations would reduce to a one component

model given by Equation 3.1. Doing this with the two component algorithm then creates

what would be a one component velocity distribution. This can be compared with the

distribution created from the analytic solution. Figure 4.3 shows a histogram of a velocity

distribution from the two component model with another histogram of a velocity distribution

created from the analytic solution for a single Plummer model (represented as a curve) over

time. As the plot shows, the velocity distribution of each component matches well with

that from the analytic equation. The distribution also retains its shape after 4 gigayears of

evolution.
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Figure 4.3: The velocity distribution of the dwarf galaxy with a mass follows light
model. When the two components have the same parameters, it creates a ‘one
component’ dwarf galaxy made from our two component algorithm. The black
line is a theoretical line generated from sampling the analytically known single
Plummer distribution function. The first row is the initial velocity distribution
of each component. The second row is the velocity distribution of each row
after 4 Gyr of evolution. There is no significant deviation over time or from the
‘theoretical’ distribution.
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4.1.3 Angular

We also required that the dwarf galaxy be spherically symmetric. To test that this

is indeed the case and to make sure the model retains spherical symmetry over time, the

angular components of the positions and velocities are plotted initially and over time in the

same fashion as the radii and velocity distributions. As per Equation 4.1, the θ distribution

should follow a sine curve distribution and the φ distribution should be uniform over the

range.

For the mass follows light model, the spatial angular components are shown in Figure

4.4 and the velocity angular components are shown in Figure 4.5. For the model with an

extended dark matter halo, the spatial angular components are shown in Figure 4.6 and

the velocity angular components are shown in Figure 4.7. As both sets of plots show, the

angular components fit the theoretical expectations closely; the model is in fact spherically

symmetric. The plots also show that the model retains this symmetry after 4 gigayears of

evolution.
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Figure 4.4: The angular components of the spatial distribution initially and after
4 Gyr for a dwarf galaxy with a mass follows light model.
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Figure 4.5: The angular components of the velocity initially and after 4 Gyr for
a dwarf galaxy with a mass follows light model.
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Figure 4.6: The angular components of the spatial distribution initially and after
4 Gyr for a dwarf galaxy with an extended dark matter halo.
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Figure 4.7: The angular components of the velocity initially and after 4 Gyr for
a dwarf galaxy with an extended dark matter halo.
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4.2 Virial Equilibrium

The previous tests show that the configuration created is in fact stable. We also want

to test that the initial structure is in virial equilibrium, and, with no external potential, it

remains so over time. Note, though that virial equilibrium is not maintained in the presence

of an external potential, in this case that of the Milky Way galaxy. In this setting, as with

the other tests in this chapter, the dwarf galaxy is placed in empty space.

An object comprised of N gravitating bodies in virial equilibrium must have a total

potential energy that is twice its total kinetic energy (Binney & Tremaine, 2006):

|U | = 2T, (4.2)

where U is the total potential energy and T is the total kinetic energy. The virial ratio,

U/2T , then, for a system in virial equilibrium, should be 1. Again, using the spatial and

velocity coordinates for each body at the end of the simulation, the total kinetic energy is

found by summing the kinetic energy of each body:

T =
N∑
i

1

2
mi(v

2
x + v2

y + v2
z)i, (4.3)

where m is the mass of a body, the v’s are its velocity components in Cartesian space, and

N is the number of bodies.

The total potential energy can be calculated in two ways. The first method uses the

body positions and the combined theoretical potential of Equation 3.4. Using the Cartesian

coordinates to find the radius, the potential energy is given by:

U1 =
N∑
i

miΦ(ri). (4.4)

The second method uses the classical Newtonian equation, calculating the energy be-

tween each individual body:

U2 =
1

2

N∑
i 6=j

N−1∑
j 6=i

mimj

rij
. (4.5)

The second method is more robust as it does not rely on the form of the potential. Calcu-

lating the virial ratio in this way works for any arrangement of bodies. If the system is in
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equilibrium, then both methods should yield a virial ratio of approximately 1.

The reason the first method is also used is that it allows for a test of whether the bodies

are properly tracing the theoretical potential model. If the bodies have been improperly

allocated then the ratio calculated from the first method would be vastly different from

that of the second method. This can be easily seen if one were to use both methods on a

simulated dwarf galaxy, in virial equilibrium, made with some set of parameters, but use a

different set of parameters when calculating the theoretical potential in the sum for U1. The

bodies would obviously not trace the theoretical potential calculated with the different set

of parameters used for U1, and thus the virial ratio would be very different from 1. While,

the second method, not reliant on the form of the potential would yield a virial ratio of 1.

This helps test that the algorithm is producing a proper distribution, while at the same time

testing for virial equilibrium.

Table 4.1 shows the results of calculating the virial ratio using both methods, for two

simulated dwarf galaxies initially, after 2 gigayears, and after 4 gigayears. The left table was

calculated for the simulated dwarf galaxy with both components the same (corresponding

to the same simulated dwarf galaxy used in Figures 4.1, 4.3, 4.4, and 4.5). This dwarf

galaxy is effectively a one component Plummer model, which is known to be stable and in

virial equilibrium (Binney & Tremaine, 2006; Aarseth et al., 1974). The left panel in Table

4.1 shows that the dwarf is created very nearly in virial equilibrium and remains so over 4

gigayears in our simulation as expected.

The right panel in Table 4.1 shows the virial ratio for a dwarf galaxy where the two

components have different parameters. In this case the dwarf is also created very nearly in

virial equilibrium and also remains so over 4 gigayears. In both cases, the two methods are

in very close agreement, further indicating that the sampling is correct and the theoretical

potentials are realized upon generation of the dwarf model.

In both panels of Table 4.1, the first method shows a slight decrease of the virial ratio

over time. The decrease is not very significant and can be explained by relaxation in the dwarf

galaxy distribution. Relaxation in the distribution can change the overall dwarf potential

from the theoretical potential used in the first method. This is seen in the radial distribution

plots; after 4 Gyr of evolution the radial distribution is shifted from the initial distribution.

Relaxation also explains why the second method yielded a ratio that maintained equilibrium

values. However, because there is not a large deviation in the radial distribution after 4
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gigayears, and relaxation is so slight and occurs on such a large time scale, the dwarf galaxy

can be considered stable and in equilibrium.

Table 4.1: Virial ratio of our simulated dwarf galaxy initially, after 2 Gyr and 4
Gyr of evolution.

Dwarf With Identical Components
Ratio Method 1 Method 2

Initial 0.960 0.963
2 Gyr 0.958 1.006
4 Gyr 0.935 1.019

Dwarf With Different Components
Ratio Method 1 Method 2

Initial 1.007 1.005
2 Gyr 0.996 1.004
4 Gyr 0.984 1.003



CHAPTER 5

Running the Simulation

We have so far described the setting of our simulations, including the model for the Milky

Way, and the description of the orbit. We have also described the theoretical dwarf model and

how it was implemented in the algorithm. These are the main components of the simulation.

There are several other aspects that are necessary in order to run a simulation that we now

detail. These include the integrator itself, the units used, the algorithm used to approximate

the body-body interactions, determining the timestep and softening parameter, the random

number seed, and the outputs of the simulation.

5.1 N-body Integrator

The equations of motion for each body must be solved in order to determine their

final positions in phase space. The only force present in the simulation is gravity. The force

calculations between the bodies use a Barnes-Hut tree algorithm which will be discussed later.

The accelerations of a body due to the Milky Way potential use analytic equations which are

described in Section 2.1.1. Therefore, we will skip the step of calculating the accelerations

for each body, and just state that they have been updated. A Velocity Verlet algorithm

(Verlet, 1967) is used to integrate the bodies in the simulation. The implementation of this

method is described here.

For each body, i, we calculate the initial array of Cartesian accelerations, a0,i, using

the initial positions, x0,i, and velocities, v0,i, from rejection sampling as described in Chapter

3. Thereafter, for every timestep t, starting with t = 0:

vt+ 1
2
,i = vt,i + at,i

(τ
2

)
,

xt+1,i = xt,i + vt+ 1
2
,iτ,

(5.1)

where xt+1,i are the new positions for the next timestep. The t+ 1
2

terms are ‘half-timestep’

values, and are used to denote that the value in question is not the final calculated value for

the next timestep. The value τ is the timestep length. The determination of the timestep

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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length is described in Section 5.4. Next the accelerations are updated using the new positions,

xt+1, and the half-timestep velocities, vt+ 1
2
. From that acceleration, the velocity at the next

time step, t+ 1, is calculated:

at,i → at+1,i(xt+1,i, vt+ 1
2
,i),

vt+1,i = vt+ 1
2
,i + at+1,i

(τ
2

)
.

(5.2)

The final positions, xt+1, and velocities, vt+1, are then used during the next time step as

xt and vt respectively. The algorithm is implemented this way for computational simplicity.

Eliminating the t+ 1
2

terms between the equations, we arrive at:

xt+1,i = xt,i + vt,iτ + at,i

(
τ 2

2

)
,

vt+1,i = vt,i + (at,i + at+1,i)
(τ

2

)
.

(5.3)

This is the original form of the Velocity Verlet algorithm (Verlet, 1967). It is seen that the

velocity for the next timestep, vt+1 is determined using the average of the accelerations of the

previous step and the next step. The Velocity Verlet equations are essentially the projectile

motion equations of an object in a gravitational field solved every timestep.

5.2 Simulation Units

As seen in Section 2.1, the potentials have units of [Φ] =kpc2/Gyr2, and not the

normal units of [Φ]= m2/s2. We also use non-standard units for the other quantities in the

simulation.

We simulate dwarf galaxies orbiting and tidally disrupting in the Milky Way. The

simulations indubitably describe large mass and length scales. The bodies in the simulation

can represent many solar masses with millions of kilometers between them, evolving over

billions of years. Their interactions use the gravitational constant which is extremely small.

To avoid floating point error, or even overflow error on some machines, we adapt a system

of units that can easily accommodate these masses, distances, and time scales.

We use kiloparsecs (kpc) for distance, gigayears (Gyr) for time, and kiloparsecs per

gigayear (kpc/Gyr) for velocity. The velocity in km/s is a factor of 0.978 different from the

velocity in kpc/Gyr. For mass, we use simulation or structural units which are derived from

units where we set the gravitational constant equal to 1. Each mass unit, then has ‘units’
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of:

[m] =
[kpc]3

[Gyr]2
= 222288.47M�. (5.4)

Using these units for mass, we are able to represent a very massive population using small

numerical values. We are not attempting to simulate individual stars that make up the

dwarf galaxy; doing so would not be computationally feasible as it would require millions of

bodies. We are instead representing the potential well that is formed by our initial dwarf

galaxy model. The bodies represent large population of stars, acting as mass proxies, that

trace the potential form. The N-body simulation, then, is a way of determining how the

initial analytic potential model we use for the dwarf galaxy evolves over time as it interacts

with the much larger Milky Way Galaxy potential well.

5.3 TreeCode

The total gravitational force on a body, i, due to all the other bodies, j, is given by

Newton’s law:

Fi =
N−1∑
j 6=i

Gmimj

rij
. (5.5)

The algorithmic implementation of this equation, using a brute force direct summation,

scales as O(N2), where N is the number of bodies in the simulation. For a large number

of bodies this becomes very computationally intensive. We use, instead, an approximation

of the direct summation; the gravitational force calculations between bodies are performed

using a Barnes-Hut tree algorithm. This algorithm scales as N log(N) (Barnes & Hut, 1986),

which is a lot less computationally intensive for large N .

The force on each body still follows Newton’s law, but uses a multipole expansion.

When calculating the force on body i, instead of summing over all the other bodies, j,

groups of bodies are combined into one depending on their distance to i. The simulation

space is divided into octant cells. If there is more than one body in an octant cell it is again

divided into further ‘daughter’ octant cells. This continues until there is one or no bodies in

the smallest octant cell of this ‘tree’.

To calculate the force on body i, you start with the outermost cell, the root, and
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Figure 5.1: A simple two dimensional representation of a quadtree. In this case,
the space is divided in quadrants, and further subdivided until there remains
one or no bodies in each cell. In our simulations, the three dimensional space is
divided into octants.

continue to go to smaller and smaller daughter cells. For each daughter cell, the distance, d,

the body i is to the center of mass of that daughter cell is compared with the length, l, of the

cell side. If the ratio of l to d is below a threshold value θ, i.e., l/d < θ, then the bodies of

that daughter cell are treated as a single body in the force calculation by using the total mass

of the daughter cell and the center of mass location as the position. After this condition is

met, the process is repeated for the other bodies. A graphical representation of a simple two

dimensional quadtree is given in Figure 5.1. The formalism of the tree algorithm is given in

Barnes & Hut (1986) and a description of its implementation is given Barnes (2001).

The tree code has some input parameters that determine the structure and behavior.

These are ‘hard-coded’ values. The first is whether or not to use quadrupole moment terms

in the force calculation. This increases the accuracy in the force calculations and is set to

‘on’. The other is the threshold value, θ, seen above, that determines how far way a group

of bodies has to be before being combined. The lower the θ value, the more the algorithm

resembles an exact force calculation. This value is set to θ = 1 for our simulations as

recommended in Barnes (2001). With this value, the brute force calculation is performed
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between bodies of the same cell and the approximation used for bodies of different cells if the

above condition is met. The tree code is implemented as a multithreaded CPU application

allowing for an even greater speed up in computation time.

5.4 Timestep Length, τ

As described in Section 5.1, the equations of motion are integrated numerically. In

order to perform this integration the value of the time differential, ‘dt’, must be determined.

This value is the timestep length, τ . During every iteration of the integration the positions

and velocities for the next iteration are determined. If the moment in time for the current

positions and velocities is ti and the next moment is ti+1, then the timestep length is the

time between these moments, τ = ti+1 − ti. This is the resolution of the integration.

The forces a body experiences during the simulation can be large depending on its

location in the overall potential well. The timestep length must be small enough to resolve

the motion of the body under the influences of such forces, but must be large enough to not

introduce errors due to numerical precision, and for the simulation to be computationally

feasible; the smaller the timestep length the more calculations that are needed. An ad hoc

rule is used to estimate approximately how small the timestep length would need to be in

order to resolve the strongest forces for the initial dwarf progenitor based on the parameters

used in its creation. For a one component model, such as a single Plummer sphere, the rule

is given by

τ =
1

γ

√
1

ρ
=

1

γ

√
4π

3

a3

M
, (5.6)

where a is the scale radius, M the total mass in simulation units, and γ is a tunable parameter

greater or equal to 1, which can be used to make the timestep even smaller. The value under

the square root is already an overestimation of 1/ρ, where ρ is the spherical density: it treats

the dwarf as if it where homogeneous and the entire mass were within the scale radius. It

is further overestimated by the tuning factor: we use γ = 1000 in our simulations, which

was found to give good simulation precision without making the computation unreasonably

long. Higher density means the particles will have higher forces between them and, therefore,

larger accelerations. This requires smaller time-steps to resolve the particle trajectory.

Using this rule as a starting point, we adapt it to be compatible with a dwarf model



43

that has two components, each of which has a scale radius and total mass. Unless the two

components have the same scale radius, the dwarf galaxy will have some semblance of a core

and a halo: a more compact inner part with a more diffuse outer part. We perform a similar

overestimation as in Equation 5.6 for each possibility, the core being made up of baryons or

dark matter. We calculate two parameters, τ1 and τ2:

τ1 =
1

γ

√
4π

3

a3
b

(MB +Mencl,d)
, (5.7)

and,

τ2 =
1

γ

√
4π

3

a3
d

(MD +Mencl,b)
, (5.8)

where ab and Mb are the scale radius and total mass of the baryonic component, and Mencl,d

is the theoretical dark matter mass enclosed within the baryonic scale radius. Similarly, ad

and Md are the scale radius and total mass of the dark matter component, and Mencl,b is the

theoretical baryonic mass enclosed within the dark matter scale radius. The mass enclosed

for a given radius (r), scale length (a), and total mass (M) is given by:

Mencl =
Mr3

(a2 + r2)−
3
2

. (5.9)

The value of γ is the same as with the single component equation. The smaller of the two

parameters is used as the timestep length. Although Equations 5.7 and 5.8 were developed

with a core and halo in mind, they still provide a good overestimation of 1/ρ when the two

components have the same scale radius and/or if they have the same mass. The values are

equal, τ1 = τ2, when the two components have the same parameters, in which case the first

is used.

The timestep length should have units of time. This is not clear when looking at the

equations. However, when using the units for mass as described in Section 5.2, the values

have units of gigayears:

[τ ] =

√
[kpc]3

[sim units]
=

√
[kpc]3

[Gyr]2

[kpc]3
= [Gyr]. (5.10)
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5.5 Softening Parameter, ε2

The bodies in the simulation each have the gravitational potential well of a point

particle. When the bodies are given positions and velocities, it is the overlapping of the

individual potential wells that create the potential well of our dwarf model.

The individual potential wells can lead to strong interactions when bodies get close to

each other. This could lead to rapid decay of the simulated dwarf galaxy as particles fly off

at extremely high, and unrealistic, velocities. These strong interactions would occur with

much lower frequency in a real dwarf galaxy, which has many more, much smaller particles.

In addition, the strong interactions might not be resolved by the timestep in the simulation.

To reduce the effects of strong interactions, the force is ‘softened’ by removing the singularity

at r = 0 of Newton’s law of gravity, thus truncating the bodies’ individual potential wells.

This is done by adding a ‘softening parameter,’ ε, to the distance between bodies. The force

between two bodies is then

Fij =
GMiMj

r2
ij + ε2

. (5.11)

Therefore, at a distance of rij = 0 the force remains finite. A simple way of interpreting

this method is that it makes the bodies into hard spheres. All that remains to do, then, is

to determine an appropriate value of ε2. We require the softening parameter to be smaller

for denser arrangements of bodies, making them ‘smaller spheres’, and allowing for more

accurate, but still finite, force calculations. Removing the singularity in each individual’s

potential well also has the overall effect of smoothing out the theoretical potential well being

represented as all of the singularities are removed.

For a single component model, we calculate the following value:

ε2 =
a2

βN
, (5.12)

where β is a tunable parameter (we use β = 100) used to reduce the softening length, N

is the number of bodies in the simulation, and a is the scale length. For a two component

model we have two scale lengths. So we use a ‘center of mass’ scale length determined by:

acm =
Mbab +Mdad
Mb +Md

, (5.13)
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where Mb, ab, Md, and ad are as defined in Section 3.1. This method is remarkably simple

and easy to implement, and does not require that we constantly check whether bodies are

too close in every iteration.

5.6 Random Number Seed

As a result of the rejection sampling technique used, a large quantity of random num-

bers is needed when creating the dwarf galaxy. These numbers are determined using a

random number generator (RNG). The RNG requires a seed to begin. This is normally

either provided by the user or manually set in the parameter files. If one is not provided

then the system time of the computer being used is taken as the random number seed.

Currently, the random number seed is set in the parameter file, and is fixed for all

parameters for a given optimization. This is necessary because of the distributed nature of

MilkyWay@home. We require all simulations with identical parameters to create identical

dwarf galaxies and thus produce identical results. This is especially necessary because of

the validation technique used by MilkyWay@home described in Chapter 7 of Desell (2009):

results that improve the search are repeated, sometimes by other users. If the seed was not

fixed, the system times of the different volunteer machines would be used. For the same

set of parameters, different results would be sent back to the server and results would not

be properly validated. In that case, there would be no guarantee that the optimization

algorithm would ever converge.

Using the same seed does not reduce the random nature of the simulations. While the

same list of random numbers is produced, these numbers could be used to sample different

quantities depending on the parameters for the dwarf galaxy. It is true, though, that the

simulation would begin with identical dwarf galaxies for the special case where the simulation

time is the only thing being altered.

5.7 Outputs

The dwarf galaxy tidally disrupts during the orbit, leading to a tidal stream of bodies

centered at the approximate location of the starting coordinates. There are two possible

outputs given by the simulation. The first is the complete list of each body’s characteristics.

These include the phase space coordinates, the mass, the line-of-sight velocity relative to

the Sun, and whether or not the body is baryonic or dark matter. There is also a unique
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body identifier number for each body to allow for the tracing of individual bodies throughout

the simulation. By using different simulation input flags, the user can choose the output

coordinates for phase space. The choices are (l,b,R), which are Solar centered, Cartesian,

which are Galactic centered, or both. The flags associated with these will be described in

Appendix A. These are most useful when performing simulations in a local setting, meaning

not on MilkyWay@home. It allows us the means to make plots of the bodies, and perform

various calculations and tests.

The other output is the histogram of the body distribution at the end of the simulation.

The main histogram is one of normalized counts, and the associated error, along the stream.

The other components are the β dispersions and the line-of-sight velocity dispersions in

each bin, with their associated error. The creation of this histogram, the calculation of the

dispersions, and errors will be described in Chapter 6.



CHAPTER 6

Metric for Comparing Results of Simulation to Data

As described in Section 5.7, there are two types of simulation outputs: the phase space co-

ordinates of each body and the histogram. The histogram output characterizes the stream

properties as a function of angle along the simulated stream, and provides a basis for compar-

ison with the data drawn from astronomical surveys. This output is produced when clients

run the simulations for a particular set of parameters on MilkyWay@home. Since the dark

matter in tidal streams cannot be observed, we compare the observed stars with only the

stars in the simulated tidal stream. The likelihood that these two distributions are the same

guides our search for dwarf galaxy parameters; each set of initial parameters produces a dif-

ferent density distribution along the stream and thus a different likelihood. Our comparison

method is described in this chapter.

The metric used for comparison is comprised of three components, each of which ac-

count for different physical aspects of the stream. The first component focuses strictly on

the density of stars as a function of angle along the stream. The second focuses on the stellar

mass that each data set represents. The final component looks at a histogram of the width

of the stream as a function of angle along the stream.

6.1 Creating Histograms of Density and Stream Width Along the

Stream

Before a comparison can be made, we must make a histogram from the simulated tidal

data. As we have said, only the baryonic bodies are included in the histogram, though they

are influenced in the simulation by the unseen dark matter. At the end of the simulation,

each body is represented in Galactocentric Cartesian coordinates and must be converted,

first to Solar-centered Cartesian coordinates, and then into angular coordinates with the

equator of the system aligned along the tidal debris stream under investigation. This type of

coordinate system is known as (Λ, β), or in this case (ΛOrphan, βOrphan). They are a rotation

of the standard (l, b) coordinate system, with transformation rules for the Orphan Stream

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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defined in Newberg et al. (2010). The rotation angles, unique to the stream in question, are

given by: (φ, θ, ψ) = (128.79o, 54.39o, 90.70o) (Newberg et al., 2010). In this system, Λ is

parallel to the stream and β is perpendicular to the stream. For a complete description of

this transformation see Appendix D.

A region of the sky is selected in which the bodies will be analyzed. This region can

be narrow or encompass the entire sky. Normally, the region is kept narrow in β to avoid

capturing multiple wraps of the stream, and to avoid particles that have been kicked out of

the dwarf galaxy and are not associated with the stream. The region in Λ is kept wide for

simulated data, encompassing almost the entire sky. Depending on the availability of stellar

data, the range is narrowed to avoid including bins without any observational information.

In this region, data from both the observations and the simulation are binned in Λ, to

represent the density of stars as a function of angular position along the stream. The total

number of bodies that fall within the entire region, NT , is also noted. The count and error

in each bin is given by Ni ±
√
N . After the binning is finished, the count in each bin is

normalized so that the sum of all the histogram bins is one:

Ni

NT

±


√
Ni
NT

if Ni 6= 0

1
NT

if Ni = 0
. (6.1)

We also characterize the width of the stream as a function of Λ. We have tried two

different widths, the line-of-sight velocity dispersion and the dispersion in the β coordinate.

The larger the dispersion, the wider that part of the stream. We will show that either is

successful for constraining the progenitor mass, but we currently use the β dispersion because

the observational data for this quantity is more readily available. The algorithm can handle

either, along with their respective errors. Both values are included in the histograms, the

line-of-sight velocity dispersion and the β dispersion, with their respective errors. The line-

of-sight velocity is determined from the positions and velocities of a body:

vLOS =
~x · ~v
|~x|

, (6.2)

where the positions are given in Solar-centered Cartesian. The dispersion in some quantity,

α, whether it be line-of-sight velocity or β, is given by:
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σ2 =
1

N − 1

N∑
i

(αi − ᾱ)2, (6.3)

where αi is the quantity for body i in a given Λ bin, ᾱ is the average of that quantity for

the entire bin, and N is the number of bodies in the bin. The normalization factor is N − 1

and not N because the average is calculated from the same population. This can be written

as (for a derivation, see Appendix B):

σ2
α =

∑
i

α2
i

N − 1
−
(

N

N − 1

)(∑
i

αi
N

)2

. (6.4)

Using this equation allows for greater computational efficiency; instead of having to calculate

the average in each bin, which would involve iterating over the entire body list several times,

we instead keep a running sum of α and α2.

These sums are first calculated for a bin and then updated by several rounds of outlier

rejection. Outliers are rejected until all bodies greater than 2.5σ from the average quantity,

ᾱ, for that bin are removed. The average is then recalculated by subtracting the values of α

and α2 for the rejected bodies from the running sum. We also reduce N , as each outlier is

removed.

The value 2.5σ was chosen as the cutoff because it cut out the most extreme outliers

without affecting the characterization of the stream width. Before outlier rejection was

implemented, a handful of outliers would greatly inflate the dispersion. This cutoff was

found to be enough to eliminate those outliers while still including the main portion of the

stream. As will also be described in Appendix A, this value can be adjusted at runtime.

Performing outlier rejection reduces the calculated dispersion of a distribution even if it

is a perfect normal distribution, so we multiply σ2
α by a correction factor after each iteration.

The correction factor is calculated assuming the underlying distribution is Gaussian:

σ2
data ·

(
σ2
guassian

σ2
truncated

)
= σ2

data

∫∞
−∞ x

2e−
x2

2σ2 dx∫ 2.5σ

−2.5σ
x2e− x2

2σ2dx
=

√
2π

2.25581
σ2
data = 1.11σ2

data. (6.5)

The correction factor depends on the cutoff (in this case 2.5), but does not depend on

σdata. This correction factor is applied after every round of outlier rejection. Currently, the
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algorithm performs six rounds of outlier rejection, which was found to be enough to remove

the most extreme outliers for both methods; it is computationally quicker to reject outliers

six times rather than testing to determine whether the algorithm has converged. This value

can also be altered from the parameter files (see Appendix A) at runtime.

After this process is complete, the error in the final dispersion value is also calculated.

For the simulation, this value can be derived analytically and is given by

σ ± δσ = σ ± σ
√
N + 1

N − 1

1

N
, (6.6)

where N is the remaining number of bodies not rejected as outliers. The derivation of this

equation can be found in Appendix C. For each bin, the histogram contains the line-of-sight

velocity dispersion and β dispersion, both with outliers rejected, and with their respective

theoretical errors. The user can choose to use both methods, one of the two, or neither, from

the parameter files. For the simulation histogram, the dispersions and errors are calculated

for each bin. For the stellar data histogram (to be discussed in Section 7.2) we may not have

enough data to calculate dispersions in each bin. The bins without dispersions are given a

default value to denote the absence of data. When performing the histogram comparison,

these bins are skipped.

6.2 Stellar Density Component of the Likelihood

We compare two stellar density distributions using an Earth Mover Distance (EMD,

Rubner et al. 2000) technique. This method is preferable to a bin-by-bin comparison such as

the χ2 method because it avoids situations where small differences between the histograms

result in huge differences in the goodness of fit. The χ2 method is given by

χ2 =
n∑
i=1

(ρdata,i − ρsim,i)2

ρsim,i
, (6.7)

where ρsim,i are the simulation histogram bins, ρdata,i are the observed data histogram bins,

and χ2 is the value being minimized. The chi-squared method compares each bin separately

and then sums their difference. This does not provide a good comparison metric because the

histograms represent stellar density along the stream in a fixed area of the sky, for a certain

evolution time.

The location of the progenitor core will naturally have a higher peak than the sur-
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rounding stream. Consider two streams, one evolved for some time, T , and another evolved

for slightly longer, T +∆t, where ∆t is just large enough for the progenitor core (in this case

much more densely populated than the surrounding stream) to be counted in a neighboring

bin. Although these two streams would be overall very similar, performing a bin by bin

comparison would yield a poor likelihood value because there is no benefit to the highly

populated bins being close to each other. In fact, in the unrealistic case of the core location

shifting to a neighboring bin being the only change between the two histograms, if the core

was comprised of N1 bodies initially, the neighboring bin had N2 bodies initially, and ε bod-

ies from the core bin shifted to the neighboring bin, the χ2 value as in Equation 6.7 would

change from exactly χ2=0 initially, to χ2= (N1+N2)
N1N2

ε2i . For large values of N1, which would

be expected for the location of the progenitor core, and for large values of ε which would

also be expected if the entire peak is shifted to the neighboring bin, the χ2 value is large.

Furthermore, the reported χ2 is the same if this shift were to occur between bins that were

further apart (all other bins remaining the same). Therefore, this method would not weigh

a slight shift to a neighboring bin with a better likelihood than a shift to a bin further away.

More realistically, many more bins would have bodies shift into neighboring bins, meaning

an even larger χ2 value, and a poorer likelihood. Such a huge comparison value for such a

small overall change makes the likelihood surface difficult to traverse.

An Earth Mover’s Distance (EMD) calculation resolves this issue by providing a method

that compares the overall shape of the two histograms instead of a bin by bin compar-

ison. The method essentially asks how much deformation has to be applied to one his-

togram to arrive at the other. It is calculated as a transportation problem, determining

the minimum amount of work needed to perform this deformation (Rubner et al., 2000).

If ρsim = {(Λ1, N1), ..., (Λm, Nm)} are the bin centers and counts in one histogram and

ρdata = {(Λ1, N1), ..., (Λn, Nn)} are the bin centers and counts in the other histogram, the

‘work’ to perform the deformation is given by:

W (ρsim, ρdata) =
m∑
i=1

n∑
j=1

dijfij, (6.8)

where fij is a flow matrix and dij is a matrix of the ground distances between bins (Rubner

et al., 2000). This value, W (ρsim, ρdata), is minimized until an optimal flow matrix is found.

The EMD value is defined in terms of the optimal flow matrix and the ground distance
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matrix as follows:

EMD(ρsim,i, ρdata,i) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

. (6.9)

This method is explained in detail in Rubner et al. (2000). The probability returned from

the EMD calculation is scaled and returned as the stellar density portion of the likelihood

value.

Pshape =

1− EMD
EMDmax

0 < EMD < EMDmax

0 otherwise
, (6.10)

where EMDmax = 50 is a scaling factor so that for reasonable configurations of bodies

EMD/EMDmax ranges from zero to one.

The two histograms being compared must have the same normalization so that it is

not necessary to create or destroy bodies to turn one histogram into the other, which would

make us dependent on the placement of a “source” or “sink” of bodies. We normalize each

histogram so that the sum over all bins is one. However, by doing this, information on the

number of bodies, and subsequently the stellar mass represented in each histogram, is lost.

To penalize the likelihood when the total mass of stars does not match the total mass of

the stellar bodies, we use a mass cost function. While EMD compares the shapes of the two

histograms, the mass cost compares the total mass each histogram represents

6.3 Mass Cost Component of the Likelihood

The amount of mass represented in each histogram is determined by the mass per

baryonic body and the number of bodies included in the histogram. Unless the entire sky

is used when making the histogram, something that is generally not done, the number of

bodies included in the histogram can vary between simulations with different parameters;

some bodies may be excluded because they fall outside of the (Λ, β) bounds of the histogram.

We introduce a penalty to the likelihood if the mass represented by the data histogram

differs from the mass represented by the simulation histogram. Note that each body in the

simulation represents a fixed mass of stars, Msim, equal to the total mass of the baryonic

component divided by the number of baryonic bodies. Similarly, each observed star in

the data histogram represents some mass of stars, as traced by the type of star that is

observed. The mass of each “star” in the data histogram is inflated by how many solar masses
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each tracer star represents, in solar masses. The total mass in the simulated histogram is

MsimNsim, and the total stellar mass represented by the data histogram is MdataNdata. We

then determine the number of standard deviations, σ, by which these two integrated mass

estimates differ. Nσ is found by dividing the difference between the two masses by the sum

of the two errors, added in quadrature. The Nσ that two values with error, x1 ± σx1 and

x2 ± σx2 , are different is given by:

Nσx1−x2
=

x1 − x2√
σ2
x1

+ σ2
x2

. (6.11)

The denominator is derived using the standard method of error propagation when adding or

subtracting two values with error.

The errors in the masses represented by each histogram can be determined by consid-

ering how the two histograms are made. While they are both counting experiments with

two outcomes, an object is either included or not, they differ in that the simulation has

a finite number of objects that can be included in the histogram. The total mass in the

simulation histogram is determined by the mass represented by each object and the total

number of objects. Since we assign the mass per object in each histogram, we consider it

to be a constant with no error. For the simulation histogram, then, the error in the total

object count is the primary source of error in this calculation.

For the stellar histogram, the number of stars in the population associated with the

stellar stream is not exactly known but is known to be very large. The objects in the stellar

histogram are tracer stars, each of which represent a population of stars not included in the

data or histogram. The measured values are, again, the masses in each histogram, determined

by the population mass represented by each object and the total number of objects. The

stellar population mass represented by each object in the histogram is assumed to be the

same. This means that a constant, the population mass represented by each tracer star, will

need to be applied to scale the two histograms; the number of tracer stars included in the

stellar histogram is multiplied by this constant. The determination of this constant will be

discussed in Section 7.1 when discussing the creation of a stellar histogram from available

data. For the stellar histogram, the errors in the total object count is again the primary

source of error.

Because the number of bodies in the simulation is fixed, the N/2 baryonic bodies in
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the simulation, and the number in the part of the sky that is “observed” is selected from this

maximum, the error in the counts for a simulation histogram is given by binomial statistics:

Nsim ±

√
Nsim

(
Nsim

Ntotal

)(
1− Nsim

Ntotal

)
, (6.12)

where Nsim is the number of bodies in the simulation histogram, and Ntotal is the number of

bodies in the simulation (baryonic component), i.e., the limit in the number of bodies that

can be in the histogram.

Unlike the simulation histogram, there is no upper limit on the number of stars that

can appear in the data histogram. The stars included in the data histogram is limited only

by the data available from astronomical surveys. While there are a finite number of stars

that are associated with the tidal stream, this number is so large compared to the number

in our simulations that it can be approximated as a continuous domain. The error in the

counts for a histogram made from stellar data is thus given by Poisson statistics, and will

depend on the method for producing the data histogram as well as the background, if any.

For a simple case without background, the error is given by,

Ndata ±
√
Ndata. (6.13)

Putting the error values into Equation 6.11, and multiplying the counts and their respective

error by the mass per object, the Nσ difference in the mass is given by:

Nσ =
MsimNsim −MdataNdata√

M2
dataNdata +M2

simNsim

(
Nsim
Ntotal

)(
1− Nsim

Ntotal

) . (6.14)

This equation is then plugged into a probability density describing whether the mass

within the two histograms are different by chance, given by:

Pmass = e−
N2
σ
2 , (6.15)

where Nσ is the number of σ the mass between the two histograms are different. This gives

the probability that the two histograms represent the same mass. The “most similar” that

the two histograms can be is identical, with a Nσ = 0. The maximum probability is one,
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giving it the same scale as the EMD component, by construction. This can then be combined

with the stellar density component. Together, these two methods characterize the density

distribution along the stream and the mass each represent.

6.4 β Dispersion Component of the Likelihood

In addition to using the density of stars along the stream to constrain the model

parameters, we also use the stream width. Historically, streams have been separated by

likely dwarf galaxy and likely globular cluster progenitors by the width of the tidal stream

produced, suggesting this width might be a powerful discriminant of progenitor mass.

At first, we tried using a 2D Earth Mover Distance method to compare the density

distribution in the Λ and β directions, but this was time-consuming and did not work when

the parameters caused the stream to shift in the β direction. Shifts in the β direction could

indicate that the orbital parameters need to be adjusted, but we do not currently optimize

the properties of the progenitor and the orbit of the progenitor simultaneously.

We then tried a histogram of the line-of-sight velocity dispersion, which worked well

for simulated data but failed on the real data because the velocity errors were too large and

the number of stars with spectra too small to measure the parameters of the Orphan Stream

progenitor. Therefore, a histogram of the spatial dispersion in the β coordinate, binned in

the same Λ bins as the number density used for the EMD, is used to compare the data with

the simulations.

Similar to the cost component, we calculate a σ difference between the width his-

tograms. We calculate the Nσ between individual bins between the two histograms, using a

similar probability density to that given by Equation 6.15.

The σ difference is between the bins’ dispersion value. The total probability that the

two histograms have the same stream widths is given by the multiplicative series of each

bin’s probability,

P =
∏
i

Pi =
∏
i

e−
N2
σ,i
2 = e

− 1
2

(
N2
σ,1+N2

σ,2+...+N2
σ,Nbins

)
= e−

N2
σ
2 , (6.16)

where the N2
σ in the exponent is the sum written as:
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N2
σ =

Nbins∑
i

(σβ,data,i − σβ,sim,i)2

(δ2
σβ,data,i

+ δ2
σβ,sim,i

)
. (6.17)

where δσβ,sim is the error from Equation 6.6. This error value is also used for δσβ,data , when

comparing the simulation against a simulated data set. For actual data, the error value is

determined using a method to be described in Section 7.2. For the simulated histograms,

we have width information for every bin. This is not the case for the stellar histogram.

Therefore, only bins with width information are included in this sum. The probability

density for the width is then,

Pwidth = e−
N2
σ
2 . (6.18)

This is the same probability density distribution used for the mass cost component.

We previously used a χ2 probability distribution for this component of the likelihood,

but abandoned it in favor of the previously described method. For a full description of the

previous method, see Appendix E.
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Figure 6.1: The probability function used for both the mass cost and the disper-
sion as a function of the number of σ difference, Nσ. For the mass cost, this is the
σ difference between the mass represented by each histogram. For the disper-
sion, it is the square root of the cumulative σ difference between the dispersion
of each corresponding bin between the two histograms given by Equation 6.17.
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6.5 Final Likelihood

Together, the three components described above allow for a comparison of the tidal

debris stream represented by two sets of histograms. Each component is combined into a

final probability given by their product:

L =
∏
i

Pi. (6.19)

Or, in log space:

ln [L] =
∑
i

ln(Pi) = ln(Pgeometry) + ln(Pcost) + ln(Pdispersion). (6.20)

We note that we have normalized the individual terms in the probability density distribution

so that they range from zero to one. The maximum probability for each component in log

space is zero; for identical histograms, ln[L] = 0. Any different normalization would produce

additive constants in log space. Therefore, normalizing the component probability densities

amounts to a shift in the likelihood surface and not a change in the shape. We prefer to keep

the maximum likelihood at zero.

The calculation of ln[L] provides a metric with which to measure the similarity of the

two histograms and thus the stellar distributions they represent. Our model parameters

are constrained by finding the parameter set for which the likelihood, ln[L], is a maximum.

Depending on what combination of the β and line-of-sight velocity dispersion is used, the

above equation could have a fourth term.

6.5.1 Best Likelihood Determination: Reducing Chaotic Behavior

Our method for navigating the likelihood surface to find the best-fit parameters relies

on the assumption that small changes in the initial parameters produce small changes in the

resulting histograms, so that the likelihood surface is fairly smooth. Unfortunately, chaos

can contradict this assumption, and in particular we found that small changes to the initial

conditions, including changing the random seed, can change the final position of the dwarf

galaxy along the orbit, and therefore cause an unacceptably large change in the likelihood.

If the forward evolve time is held constant, the location of the peak of the distribution of

stars would fluctuate back and forth along Λ as each dwarf galaxy parameter is changed,

making it difficult to find the peak likelihood.
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As described in previous sections, the optimizer currently fits five parameters: four

dwarf parameters and the evolution time. One particle is moved backwards along the orbit

for the evolution time, and we run the simulation in the forward direction for as long as

it takes for the progenitor to get to the current position, as determined by the time to get

to the maximum likelihood. At the beginning of the simulation, the number of time steps

in the simulation is determined based on the timestep length and the simulation time. At

some percentage of the total number of time steps, and for every subsequent time step,

the simulation will create a histogram from the current state of the simulation during that

time step, compare with the input histogram and calculate a likelihood. We save the best

likelihood value from all of the steps tested, along with the associated histogram. The

percentage value is an input parameter, and is currently set to 98 percent, so the program

searches for the maximum likelihood for a window of forward evolution times between 98%

and 100% of the evolution time parameter.



CHAPTER 7

The Progenitor of the Orphan Stream

7.1 Stellar Mass Represented by Orphan Stream Tracer Stars

The Orphan Stream has been chosen as an example due to the interesting property of

its unknown progenitor, and the access to stellar density data from Newberg et al. (2010).

Multiple possibilities for the progenitor have been proposed, including SEGUE-1 (Newberg

et al., 2010), Complex A (Jin & Lynden-Bell, 2007), UMa II (Belokurov et al., 2007). How-

ever, arguments in Newberg et al. (2010) are convincing in rejecting these possibilities and

they suggest that an overdensity around (l,b) = (270,30) at the edge of the SDSS data in

the region could be the remains of the progenitor.

We have turnoff star data from Newberg et al. (2010) which allow us to trace the

stream density across the sky. Each turnoff star represents a population of stars with a wide

range of masses that we do not see because they are too dim, or because they have evolved

away from the main sequence. To begin creating a histogram of Orphan stream data, we

must determine the mass represented by the turnoff stars we observe. Our method of doing

this is to use a globular cluster with similar stellar population. Using turnoff star data from

that cluster and the total mass of that cluster, we can estimate how much mass each turnoff

star represents. We then make a similar assumption as in Savage et al. (2006), that since the

stellar population is similar to the Orphan Stream, the turnoff stars should represent similar

masses. The Orphan stream has a turnoff color of (g-r)0 = 0.22. Palomar 5 has a similar

turnoff magnitude, so we make it our globular cluster of choice. The total mass of Pal 5 is

taken as approximately 5×103M� (Savage et al., 2006). We select a total of 3253 stars in

the sky location of Pal 5 from SDSS DR14 (Abolfathi et al., 2018), using the CasJob query

shown below. We make a color cut in the range 0.12< (g-r)< 0.26, as this was the color cut

used in Newberg et al. (2010) for the Orphan Stream turnoff star selection. We also apply

a magnitude cut of 19 <g<23.

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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Table 7.1: CasJob query used to select Palomar 5 stars.

CasJob Query
select star.objid, star.ra, star.dec, star.dered u,
star.dered g, star.dered r, star.dered i, star.dered z into mydb.MyTable 7
from star, dbo.fGetNearbyObjEq(229.0256,-0.12415,10) n
where star.objid = n.objid

After the cuts, 352 turnoff stars were selected. The full data set is shown in Figure 7.1, with

the selected turnoff stars shown in blue.
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Figure 7.1: Top: Right ascension (RA) and declination (DEC) of the full data
selection. The selected turnoff stars are shown in blue. Bottom: Color mag-
nitude diagram of the full data selection. The selected turnoff stars are again
shown in blue.
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As the plot of RA and DEC show, there is an apparent underdensity in the center of

the data set. This is because the cores of globular clusters are too densely populated with

stars for the deblending algorithm to pick out each individual star. Before estimating the

mass per turnoff star, we first estimate how many stars are missing from the data set. We

fit a Plummer model to the data, with the radius given by the distance to the cluster center,

taken as (RA,DEC)= (229.022o, -.11139o). The data is a two dimensional projection of the

globular cluster on the night sky, so we use a Plummer surface mass density model. This is

given by:

Σ(R) =
Ma2

π(a2 +R2)2
, (7.1)

where M is the total mass, and a is the scale length. Since this is a surface mass density,

the scale length is converted from the core radius, not the half-mass radius, for Pal 5. The

core radius is 2.29 arcmin, or 0.0382o. The mass enclosed in this model is given by:

dMenclosed = 2πΣ(R)RdR. (7.2)

Integrated from the center to radius R, this becomes,

Menclosed(R) =
MR2

a2 +R2
. (7.3)

Since the color selection was similar to Savage et al. (2006), we use the same expected

background of 32 stars, which is added to the total turnoff star count. These equations are

plotted in Figure 7.2, along with the corresponding stellar values.
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Figure 7.2: In the upper panel is a plot of the mass enclosed function of the
Plummer surface density, with a histogram of the turnoff star counts. Below is a
plot of the total mass enclosed as a function of distance from the cluster center
of the Plummer model and the turnoff stars. This is with an added expected
background of 32 stars. As both panels show, there is a count discrepancy near
the core of the cluster.
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Looking at the count difference between the stellar data and the model, it was deter-

mined that there were approximately 30 turnoff stars missing from the core. Dividing the

total mass by the then 382 turnoff stars gives that each turnoff stars represent about 13M�.

7.2 Creation of a Data Histogram

We use detections from the Sloan Digitial Sky Survey (SDSS) of turnoff stars in the

region of the sky corresponding to the location of the Orphan stream. The (Λ, β)Orphan

coordinates for the stars in both the On and Off fields, as described in the Newberg et al.

(2010), were compiled. We then created a density distribution histogram of counts along the

stream, and determined the associated error in those counts using standard error propaga-

tion. After some extensive analysis, we derive β dispersions and their associated errors for

four points along the stream.

As stated above, the software allows either line-of-sight velocities or β dispersions to

be used in combination with the density histogram to constrain the properties of the dwarf

galaxy progenitor. Initially, the line-of-sight velocity dispersion was used successfully with

simulated data. However, the line-of-sight velocity errors in the available data for the Orphan

Stream were too large, and the number of stars with measured velocities was too small to

get useful results with the real data. Instead, we use β dispersions, for which we have much

more data. As will be described in Appendix A, the user can choose to use one or both of

the dispersion methods in the parameter files for the simulation. This was done with an eye

towards more complete data that will become available from future astronomical surveys.

Currently, data from the Gaia mission is becoming available and could possibly allow the use

of the line-of-sight velocity dispersion method in conjunction with the β dispersion method.

Using both would add an extra constraint on the stream width and may aid in optimization.

7.2.1 Recreating the Data

We first recreate the histogram data from Newberg et al. (2010). The β coordinates are

corrected as described in Section 6 of Newberg et al. (2010). This shifts the β coordinates of

the data so that the stream center better aligns with β = 0. The On field is located within

-2o < βOrphan < 2o from the stream center, and the Off field is located within 2o < |βOrphan|
< 4o away from the stream on both sides. The On field, Off field and their difference is

binned in Λ, as shown in Figure 7.3 and tabulated in Table 7.2. In our figure we use the
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same bin boundaries and widths as in Figure 5 of Newberg et al. (2010). The error in the

counts in each bin is calculated as
√
Ni, where Ni is the number of star counts in a single bin

of either the On or Off field histogram. The error for each bin in the difference histogram is

calculated by summing the two errors in quadrature, as shown in Equation 7.4:

σdiff,i =
√
NOn,i +NOff,i. (7.4)
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Figure 7.3: Histogram of the uncombined Λ bins. This figure reproduced Figure
5 of Newberg et al. (2010). The black histogram depicts the On field, the red
the Off field, and the blue histogram the difference.
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Table 7.2: On-field and Off-field star count data with their corresponding dif-
ference as seen in Figure 7.3. There are three bins for which we have no or
incomplete data.

Bin Center (Λ) On-field Off-field Difference Error

-34.5 265 222 43 22.07
-31.5 341 322 19 25.75
-28.5 427 378 49 28.37
-25.5 539 538 1 32.82
-22.5 640 537 103 34.31
-19.5 736 637 99 37.05
-16.5 750 654 96 37.47
-13.5 821 679 142 38.73

-10.5 847 697 150 39.29
-7.5 956 853 103 42.53
-4.5 1146 1028 118 46.63
-1.5 1299 1213 86 50.12
1.5 1277 1160 117 49.37
4.5 1042 952 90 44.65
7.5 894 789 105 41.02
10.5 822 767 55 39.86

13.5 859 808 51 40.83
16.5 894 746 148 40.50
19.5 976 798 178 42.12
22.5 563 125 438 26.23
25.5 - - - -
28.5 - - - -
31.5 - 18 - -
34.5 407 314 93 26.85

As can be seen in Table 7.2, there are three bins for which we have no data. This

presents a problem with our current comparison algorithms. For the EMD calculation, we

can easily skip these bins with a specific choice of flags. However, the cost component

will need to be adjusted to remove the counts in the corresponding bins of the simulation

histogram from the total histogram count. Since we have no data in that region of the sky,

we cannot use simulation data in that region to constrain the mass in the histogram.

Next, the σβ for each bin must be determined. Ideally, we would calculate a value for

each bin in Table 7.2. However, this was not possible because there were too few stars and
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the errors in the star counts were too large to trace a cross section through each 3o-wide

stream segment. In many bins it was impossible to see any difference between the On and

Off fields.

7.2.2 Modeling the Stream Width

Several Λ bins were combined in order to measure the excess stream stars in four

separate segments along the stream, as shown as the histograms in Figure 7.4. We performed

a numerical fit to the entire Λ bin using a model for the background and the Stream.

The model used a combination of a linear model for the background and a Gaussian

model for the stream. It was fit to the data of the combined On and Off field counts as a

function of β, for each Λ bin. The data are shown as open circles in the top panels and bar

graphs in the lower panels of each plot in Figure 7.4. The model is given by:

f(x) = mx+ b+ Ae−
(x−µ)2

2σ2 . (7.5)

The parameters are the linear slope (m), the linear y-intercept (b), the Gaussian ampli-

tude (A), the Gaussian offset (µ), and the Gaussian width (σ). The data is fit using a

differential evolution algorithm to minimize the sum of square residuals between the model

and data. The differential evolution algorithm used here is different from the one used in

MilkyWay@home and was written specifically for this problem. This algorithm was tested

on several mock datasets with random noise, and was able to recover the parameters that

produced them.

The best fit curves to the data are shown as the black curves in the top panels of the

plots in Figure 7.4. The best fit σ of the Gaussian component is taken as σβ, and the error

in the fit σ, as calculated in the next section, is taken as the error in σβ.
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Figure 7.4: Plots of the combined ΛOrphan bins. The On field (blue histograms)
and Off field (red histogram) are shown separately. The combined counts of the
two fields are shown in the top parts of each panel as black circles. The best fit
to the combined distribution is given by a black curve. The fitted σ values and
errors, which corresponds to the width of the On field, are given in Table 7.3.

Table 7.3: Fitted Gaussian widths and corresponding errors for four segments
of the stream.

Bin Range Fitted σ Fit Error

-25 < Λ < -10 1.07 0.454
-7 < Λ < 5 0.64 0.33
5 < Λ < 20 0.74 0.32
20 < Λ < 30 1.3 0.40
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7.2.3 Calculating the Error in σβ

The error in the fit width of the Gaussian is determined using a Hessian matrix method.

The Hessian matrix is a matrix of the partial derivatives of the cost function (sum of squared

residuals, P) as a function of each parameter. It is therefore a 5×5 matrix:

Hij =
∂2f

∂xi∂xj
=


∂2f
∂m2

∂2f
∂m∂b

. . . ∂2f
∂m∂σ

∂2f
∂b∂m

. . . . . . ∂2f
∂b∂σ

...
...

. . .
...

∂2f
∂σ∂m

∂2f
∂σ∂b

. . . ∂2f
∂σ2

 . (7.6)

The partial derivatives are determined numerically. We keep the order of the numerical

derivatives the same. Therefore, for the diagonal elements the derivatives are given by a

numerical second derivative:

f ′′(x) ≈ P (α + h)− 2P (α) + P (α− h)

h2
, (7.7)

and the off diagonal elements are given by a numerical partial derivative:

f ′′(x) ≈ P (α + h1, γ + h2)− P (α + h1, γ − h2)− P (α− h1, γ + h2) + f(α− h1, γ − h2)

4h1h2

,

(7.8)

where α and γ are any of the parameters such that α 6= γ, and h’s are step sizes for a given

parameter. The inverse of this matrix is the variance matrix, Σij = H−1
ij , the diagonal values

of which are related to the errors in the fit of each parameter by:

σfit,i = Σii =
√
H−1
ii . (7.9)

Since the step sizes for each parameter are generally different, we must choose ideal

values. We first use some initial value for the step sizes for each parameter. We then use

an iterative method of calculating the errors in each parameter and replacing the step size

for a parameter with its error. This is repeated until the errors no longer change between

iteration, i.e., they converge. This is also done with several different initial values, though

the convergence error values are normally the same for any reasonable initial step size.

The σβ,i ± σfit,i for each of the combined bins are assigned to the bin in Figure 7.3

whose bin center corresponds to the bin center of the combined bin. Because the background
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counts are much larger than the counts of turnoff stars in the stream, the errors in the σβ’s

are fairly large. The error could be reduced, and the number of measured bins increased,

if the stream could be better separated and the background reduced. Proper motion data

from future Gaia data releases will be very helpful for this.



CHAPTER 8

Optimization and Results

8.1 MilkyWay@home

Our method of probing the dark matter content of dwarf galaxies requires signifi-

cant computational resources from MilkyWay@home. MilkyWay@home is an approximately

800 TeraFLOPS volunteer supercomputing platform that is specially designed to optimize

model parameters, given a dataset with which to compare the model, and a function that

measures the goodness of fit. It uses the Berkeley Open Infrastructure for Network Com-

puting (BOINC), which manages the sending of “work units” to volunteered computers in

all countries in the world. Each work unit computes the goodness-of-fit for one set of model

parameters. These work units run in the background when the volunteered computers are

not being used for other tasks; when they are finished, the results are sent back to our local

server.

This platform was originally designed to use statistical photometric parallax to fit a

density model to turnoff stars in the Milky Way’s stellar halo (Cole et al., 2008; Newby et al.,

2013; Newberg, 2013). For this case we use a maximum likelihood algorithm to define the

best fit, 20 parameter density model to the observed spatial distribution of stars. We have

adapted MilkyWay@home to find the best model fit to observed properties of tidal debris,

including stream density and dispersion.

Optimization methods come from the Toolkit for Asynchronous Optimization (TAO)

(Desell, 2009), which was originally designed specifically for MilkyWay@home. The opti-

mization methods include particle swarm, differential evolution, and genetic algorithms that

work well in our highly asynchronous, heterogeneous environment (Desell et al., 2008, 2009).

For the N-body application, MilkyWay@home optimizes over five parameters. It uses

a differential evolution algorithm specially modified to work on a distributed supercomputer

(Desell, 2009; Weiss, 2018). This optimizer creates and maintains a population of the best

simulation likelihoods. It replaces members of the population with parameter sets with

likelihoods that are better, as these better population members are returned from volunteer

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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machines. At any given time, the current population is used to determine what values to

send out to volunteers to evaluate. A complete description of the method and algorithm can

be found in Chapters 2 and 5 of Desell (2009), and Section 4 of Weiss et al. (2018). Chapter

2 of Desell (2009) describes the basic algorithm in its normal form. Chapter 5 of Desell

(2009) and Section 4 of Weiss et al. (2018) describe the implementation of this algorithm in

our highly asynchronous environment.

We use 20,000 bodies in our simulations, of which 10,000 represent the stars and

10,000 represent the dark matter. Simulation times vary from a few minutes to a few days

depending on the model parameters being simulated and the speed of the volunteer machine.

Optimization on Milkway@home tends to take two to three weeks until convergence. Full

convergence is reached when returned values no longer differ, and the entire population is

identical.

The differential evolution algorithm has several parameters which affect how quickly

our search converges. We have tried different optimization parameters and were able to

speed up the optimization from what was previously about three months for convergence.

This involved changing the population size, cross over rate and the differential scaling factor.

The algorithm uses a population of parents made up of a parameter set and an associated

likelihood value. For N-body, we use a population size of 50. Children are generated from

two randomly selected parents. The crossover probability is set to 0.9 and the differential

scaling factor is set to 0.8. For a detailed explanation of the roles of these parameters in the

algorithm see Section 4 of Weiss et al. (2018). The current values for these parameters are

given in Table 8.1.

Table 8.1: Current values for the differential evolution optimization algorithm.
Using these parameters has led to a N-body optimization convergence time of
approximately 3 weeks.

Current Differential Evolution Parameters
Parameter Current Value

Population Size 50
crossover rate 0.9

Differential Scaling Factor 0.8
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8.2 Simulated Data

To test our ability to recover parameters for our model, we created a simulated data set

with known parameters, and attempted to recover the parameters used in its creation using

MilkyWay@home. Table 8.2 shows the parameters used to generate the simulated (“correct”)

data histogram, as well as the range (“search range”) over which the optimization algorithm

was allowed to search. The search range for the mass ratio parameter (ξM) was set as wide

as possible, with a mass to light ratio ranging between 1000:1 to 1:1, representing dwarf

galaxies that are strongly dark matter dominated to dwarf galaxies with no dark matter at

all. The baryonic mass (MB) search range was also set fairly wide compared with the dwarf

galaxy mass used in Newberg et al. (2010) of 2.5×106 M�. We again use the static Milky

Way potential and orbit from Newberg et al. (2010), as described in Section 2.1 and 2.2,

respectively.

The baryonic mass search range of 1 to 100 structural units corresponds to a mass of

2.2 ×105 M� to 2.2 ×107 M�, respectively. The search range for the baryonic scale radius

(RB) was narrower, between 0.05 kpc to 0.5 kpc. The smaller range was chosen because

any lower would mean a very dense object, requiring a very small timestep and thus an

unfeasibly long computational time on the average client computer. The upper end of the

range limits the scale radius to a relatively large Milky Way dwarf galaxy, though the LMC,

SMC, Sgr, Crater II and Canis Major are all larger. The radius ratio (ξR) search range goes

from 0.1 to 0.6, corresponding to a dark matter halo that is 100 times more extensive as the

baryonic component to mass follows light.

The simulation time was also given a fairly wide search range corresponding to the

dwarf galaxy core remaining undisrupted to it being mostly disrupted as seen in Figure 8.1.

A (Λ, β) plot of the simulated dwarf galaxy used in our final optimizations, with histograms

of both components is shown in Figure 8.2. As seen in the figure, the dark matter compo-

nent follows the evolution of the baryonic component, with alignment of the peaks in their

distributions. We can extract information about the unseen dark matter by exploring how

the tidal stream is formed in its presence.
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Figure 8.1: The stellar portion of a tidally disrupted dwarf galaxy in stream
coordinates (Λ, β). The N-body simulation was evolved for 2 Gyr (left) and 6
Gyr (right), with their respective histograms of stellar density as a function of
angle along the stream shown in the lower panels.
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Figure 8.2: The simulated data histogram. Above is a sub-sampled Λ, β plot
of the two components. Below are the corresponding density distribution his-
tograms. As can be seen in either panel, the two components have similar density
distributions. The main difference is the baryonic core present at Λ ∼ 10. Both
panels illustrate that the dark matter component closely mirrors the evolution
of the baryonic component.
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Evidence that the properties of the dark matter in the progenitor can be ascertained

from the distribution of stars in the stellar stream it produces is shown in Figure 8.3. This

figure shows a two-dimensional likelihood surface, generated by varying the two ratio pa-

rameters that determine the dark matter properties, while fixing the other parameters. The

simulated “data” histogram is generated with a different random seed than was used in

generating the streams that were generated to calculate the likelihoods. A ridge is clearly

visible in the left panel of Figure 8.3, where the recorded likelihood is much better than the

surrounding parameter space. On the right is the same plot but with the correct answer

indicated by a green ‘x’, and the fitted values from our optimizations shown as black dots.

In addition, the right panel includes an overlay that indicates the region of parameter space

in which the dark matter mass within the half-light radius is approximately constant. Note

that this region aligns with the ridge in the likelihood surface, but that the likelihood surface

is not constant along the ridge. The likelihood is higher near the mass and radial profile for

which the simulated data was created. If the algorithm was sensitive exclusively to the mass

within the half light radius, the fitted values would have been randomly distributed along

the shaded region. The fitted values fall within the ridge, indicating an implied relationship

between the values that the algorithm is fitting and the mass outside of the half-light radius.
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Figure 8.3: Likelihood surface of the two ratio parameters, the radius ratio and
mass ratio, that are used to determine the dark matter scale radius and mass.
The right plot is the same as the left but also shows the fitted values as black
dots, and the correct answer as a green x. Also plotted is the region, displayed
in red, in these two parameters where the dark matter mass within the half
light radius is approximately the same as the simulated progenitor. As the heat
map shows, there is a ridge in the surface that corresponds with the red region.
However, the ridge is peaked at the dark matter mass and scale length of the
simulated progenitor, indicating that information about these two quantities is
present in the resulting stream.
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We use a different seed in the creation of our simulated data set from that used for the

optimization runs. For the baryonic component parameters, we use similar parameters as

those of the single component Plummer model used in the N-body simulations in Newberg

et al. (2010), which is approximately 12 simulation units, or 2.7 ×106 M�, with a scale length

of 0.2 kpc. For the dark matter component, we use a mass to light ratio of 4:1, with the

dark matter radial extent four times as large as the baryonic component. This represents a

dwarf galaxy whose stellar component is embedded in an extended dark matter halo. This

can be seen in Figure 8.4, which shows the radial distribution of both components and the

entire dwarf galaxy as a whole. The mass ratio was also set to 0.2, which makes the dark

matter mass four times as massive as the baryonic component, at 48 simulation units, or

1.1× 107 M�. These parameters were found by fixing the baryonic component and altering

the dark matter component until the final distribution, shown in Figure 8.2, is reminiscent

of the Orphan stream stellar distribution given in Figure 5 of Newberg et al. (2010). The

likelihood value obtained from comparing a histogram made from these parameters with a

simulation also run with these parameters but with a different random number seed used in

the optimization (different from the one used in the creation of the histogram) is given along

with the “correct” parameters in Table 8.2.
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Figure 8.4: An example of the initial distribution of the two component dwarf
galaxy with the parameters set to the values as described above. As the figure
shows, the dark matter component extends well past the baryonic component.
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8.3 Results

To create the histogram used in our optimizations, the dwarf galaxy is integrated from

4 Gyr in the past forward for 3.95 Gyr. This places the progenitor core at (l,b) ∼ (250o, 50o)

as in Figure 17 of Newberg et al. (2010). As we have described previously, in the simulations

performed on MilkyWay@home, the dwarf galaxy is placed in orbit at some time in the past

and integrated forward for the same amount of time, returning the best likelihood value

between a search range of 98% and 100% of the evolution time. For this histogram, the

forward evolution time is 98.75% of the time in the past from which it was evolved, placing

the progenitor core within the search range for the best likelihood calculation. In other

words, doing this places the progenitor core just before where it would end up if the forward

evolution time was also set to 4 Gyr. This is done to give the optimizer more freedom in the

placement of the progenitor core during the optimization as we have described in Section

6.5.1. Since the core is not placed at 100% of the evolution time, fluctuations on both sides

of the progenitor core can be taken into account. Examples of these fluctuations are shown

in Figures 8.5 and 8.6. These plots show histograms of tidal streams created from a dwarf

galaxy with the same parameters used in our optimizations, but each formed with a different

random number seed. As seen in those figures, the peak fluctuates on either side of ΛOrphan ∼
25 and l ∼ 250, respectively.

Three identical but independent optimizations were performed for our simulated tidal

stream. The results of the three optimization trials are shown in Tables 8.2. We have

converted the parameters to values that are easier to understand, and are given in Table

8.3. We were able to recover the baryonic mass very well, with all the fitted values within

2.3% from the correct answer. Similarly, we are able to recover the baryonic scale radius,

with all the fitted values within 4% from the correct answer. The evolution time was not as

accurately recovered, with the fitted results all within 8.5% of the correct answer. We were

not able to recover the dark matter values accurately, with the fitted mass ratios as far as

73% from the correct answer, and the radius ratios as far as 41% from the correct answer.
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Table 8.2: Best fit values for optimizations fit to a histogram made from a
different seed from that used in the simulations run on MilkyWay@home. These
were fit using the comparison method described in Chapter 6. The simulated
data histogram was created by integrating a dwarf galaxy from 4 Gyr in the
past for 3.95 Gyr. The parameters are the evolution time, the scale length of
the baryonic component (RB), the radius ratio (ξR), the baryonic mass (MB), and
the mass ratio (ξM).

Parameters Evolve Time (Gyr) RB (kpc) ξR

Correct 4.0 0.2 0.2
Search Range [2.0 - 6.0] [0.05 - 0.5] [0.1 - 0.6]

Trial 1 4.045 ± 0.031 0.208 ± 0.003 0.282 ± 0.025
Trial 2 4.340 ± 0.030 0.205 ± 0.005 0.213 ± 0.010
Trial 3 4.134 ± 0.026 0.208 ± 0.005 0.243 ± 0.024

Parameters MB (sim units) ξM Likelihood

Correct 12.0 0.2 -41.127
Search Range [1.0 - 100.0] [0.001 - 0.95]

Trial 1 11.719 ± 0.025 0.346 ± 0.068 -17.226
Trial 2 12.061± 0.036 0.204 ± 0.013 -18.582
Trial 3 11.871 ± 0.042 0.314 ± 0.045 -18.954

Table 8.3: The fitted values as in Table 8.2, but converted to values that are
easier to understand. In addition to those parameters from Table 8.2, we have
the scale length of the dark matter component (RD), and the mass of the dark
matter component (MD).

Parameters Evolve Time (Gyr) RB (kpc) RD (kpc) MB (M�) MD (M�)

Correct 4.0 0.2 0.8 2.667×106 1.067×107

Trial 1 4.045 ± 0.031 0.208 ± 0.003 0.530 ± 0.071 2.605 ± .001 ×106 .493 ± .166×107

Trial 2 4.340 ± 0.030 0.205 ± 0.005 0.755 ± 0.052 2.681 ± .001×106 1.048 ± .086×107

Trial 3 4.134± 0.026 0.208 ± 0.005 0.646 ± 0.091 2.639 ± .001×106 .576 ± 0.132×107
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However, the mass ratio had a wide search range of ξM = [0.001, 0.95]. The dark matter

mass represented by this ratio is dependent on the baryonic mass, as given by Equation 2.1,

which has a search range of MB = [1, 100] simulation units, or [2.2×105 M�, 2.2 ×107 M�].

Looking at all possible configurations of baryon mass and dark matter mass accessible during

the optimization, the mass of the dark matter can be set anywhere between 104 M� and

2.2 ×1010 M�. Looking at the narrowest search range possible, that which would occur if

the mass of the baryons was fixed at the correct value, the accessible values of dark matter

masses would still range from 1.4×105 M� to 2.67×109 M�. This is an incredibly large range

of masses. Yet, in each trial, we were able to fit the dark matter mass within a factor of

approximately 2. Therefore, although the mass ratio was not fit very accurately, considering

the size of the parameter space, the fit to the total dark matter mass is remarkable.

We can perform a similar analysis for the radius ratio, which ranges from ξR = [0.1,

0.6]. The dark matter scale radius represented by this ratio is dependent on the baryonic

scale radius, which has a range of RB = [0.05, 0.5] kpc. Again looking at the possible

configurations of baryonic scale radius and dark matter scale radius accessible during the

optimization, the scale length of the dark matter can be set anywhere between 0.033 kpc to

4.5 kpc. Looking at the narrowest range possible, if the baryonic scale radius was fixed to

the correct answer, the accessible values of dark matter scale lengths would range from 0.33

kpc to 1.8 kpc. This, too, is a wide range of possible scale lengths. Yet, we were able to fit

the dark matter scale radius within a factor 1.5.

Furthermore, the fact that we are able to recover these values to this degree is incredible

as the radial extent of the dark matter component extends well beyond the half light radius

(see Figure 8.4). In fact, with these parameters, most of the dark matter mass is located

outside of the half light radius of 0.261 kpc, with 1.43 simulation mass units (3.2 ×105 M�),

of dark matter mass enclosed within. This means our algorithm was able to find the total

dark matter mass within a factor ∼2 with less than 3% of the dark matter mass within the

half light radius.

We performed a preliminary error analysis using a Hessian matrix method, as described

in Section 7.2.3. The error values are small; none of the correct values lay within the errors

of the fit values. In fact, even the fitted parameters that were quite close to the correct

values are many σ’s away. A table of the number of σ each fitted value is away from the

correct value is given in Table 8.4.
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Table 8.4: The number of σ, each fitted value was away from the correct answer
according to the calculated errors.

Parameters Evolve Time (Gyr) Nσ

Correct 4.0
Trial 1 4.045 ± 0.031 1.45
Trial 2 4.340 ± 0.030 11.33
Trial 3 4.134 ± 0.026 5.15

Parameters RB (kpc) Nσ

Correct 0.2
Trial 1 0.208 ± 0.003 2.67
Trial 2 0.205 ± 0.005 1.0
Trial 3 0.208 ± 0.005 1.60

Parameters ξR Nσ

Correct 0.2
Trial 1 0.282 ± 0.025 3.28
Trial 2 0.213 ± 0.010 1.30
Trial 3 0.243 ± 0.024 1.79

Parameters MB (sim units) Nσ

Correct 12.0
Trial 1 11.719 ± 0.025 11.24
Trial 2 12.061± 0.036 1.69
Trial 3 11.871 ± 0.042 3.07

Parameters ξM Nσ

Correct 0.2
Trial 1 0.346 ± 0.068 2.15
Trial 2 0.204 ± 0.013 .31
Trial 3 0.314 ± 0.045 2.53

Although it is possible that the optimizer could be tuned to better traverse the like-

lihood surface, we suspect that the poorness of the fit is most likely due to our choice of

random seed used to create the simulated data set. For some choices of random number

seed, some of the distinctive characteristics of the provided histogram, such as peaks, can

disappear. The simulated data histogram used in the above optimizations, seen in the first

panel in each figure, was one such case. Our particular choice of random seed produces a

tidal stream that is unfortunately not very similar to the real data in that it does not have a
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strong peak (see Figures 8.5 and 8.6). The best fit parameters from MilkyWay@home, using

a different seed, therefore do not reproduce the data. Although other random seeds would

have produced a closer match to the fit parameters, it may not be possible in practice to

fit much closer than we show here due to chaotic differences between the simulation results.

This process deserves a more thorough analysis in the future.
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Figure 8.5: Plots of the simulation histogram used in the optimization, made
with 10 different seeds. As the plot shows, there is fluctuations in the location
and shape of the peak seen at ΛOrphan ∼ 25o.
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Figure 8.6: The same dwarf galaxies shown in Figure 8.5, but binned in l. As
the plot shows, there is a fluctuation in the location and size of the peak at l ∼
250o.
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These results show a proof of concept: our distributed supercomputer, MilkyWay@home,

using the described optimization algorithm, can recover the best fit parameters of a progen-

itor dwarf model, given sufficient photometric data for tracer stars in the Orphan Stream,

and that the model for the dwarf galaxy, the Milky Way potential, and the orbital param-

eters are known exactly. Tests will be required to determine how sensitive we are to errors

in these quantities. In principle, the algorithm can be extended to fit these as well, with

additional data required to constrain the additional parameters. Importantly, using our N-

body method, we are able to extract information about the dark matter distribution well

outside of the half light radius. This can be compared to other methods of fitting tidal

stream properties, such as streakline (Küpper et al., 2012), which are limited to information

contained within the tidal radius. These results give us confidence that we can fit accurate

dwarf galaxy parameters to a histogram of stellar stream data: the parameters that Milky-

Way@home fit are reasonable estimates of the parameters of the dwarf galaxy progenitor for

the Orphan Stream.



CHAPTER 9

Conclusions

We have developed a method for constraining the shape and mass of the progenitor dwarf

galaxy from the distribution of stars in the tidal stream that it created. Our model provides a

straightforward way to probe the dark matter content of the Milky Way satellites without the

assumption of virial equilibrium required to tie line-of-sight velocities to dwarf galaxy mass.

It also avoids the pitfalls of using a small number of spectra to determine the line-of-sight

velocity dispersion.

We have also derived a metric of comparison between our simulated tidal stream dis-

tribution and that compiled from stellar data. This metric has proven to work well as seen

when comparing our simulations to simulated data sets. The comparison metric is comprised

of three components, each constraining a different aspect of the tidal stream: the general

shape, the mass present in each stream, and the width of the stream as a function of stream

length. To utilize these comparison metrics we create a normalized histogram of the simu-

lated tidal stream along the stream length. We derive expressions for the stream’s angular

dispersion along with a theoretical error.

Using stellar positional data, we are able to create a histogram compatible with our

algorithm that allows us to compare our simulations directly to stellar data. We estimate

the amount of mass each tracer star represents by comparing the Orphan Stream to a

globular cluster comprised of a similar population of stars. We use stellar data from Newberg

et al. (2010) to create a density distribution histogram along the stream. We determine the

dispersions along the stream by fitting a model to the data in each histogram bin, using a

similar optimization algorithm as that used in MilkyWay@home. We use a Hessian matrix

technique to determine the errors in our fitted values, one of which is the error in the

dispersion. In order to estimate the parameters of the real Orphan Stream progenitor, we

need to run the algorithm in a way that recognizes the missing data in some Λ bins in

the real data. Here, we only show that it is is possible to create the required inputs for

MilkyWay@home from real stellar data. After implementing these changes, our next step is

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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to perform an optimization over the Orphan Stream data histogram. We may need to use

several seeds in the optimization in order to find typical fitted values.

We demonstrate the ability to recover the parameters used in creating a simulated

tidal stream both when using the same and a different seed as the simulations. We are able

to recover the parameters for the baryonic component very well, with the fitted masses all

within 2.3% of the correct value and the baryonic scale radius all fit within 4% of the correct

value. We are able to recover the mass of the dark matter component within a factor ∼2 of

the correct value, and the dark matter scale length within a factor of 1.5 of the correct value,

even though, for our simulated tidal stream progenitor, 97% of the dark matter mass lies

outside the half-light radius. This gives us confidence that we are able to extract information

about the dark matter component of the progenitor of the Orphan Stream.

9.1 Discussion and Future Work

We have been able to recover parameters used in the creation of a simulated tidal

stream. This demonstrates our algorithm’s ability to traverse the complicated likelihood

surface of our five parameters. Furthermore, we are able to recover these parameters when we

have used a different seed for the creation of our simulated data set. This further illustrates

the versatility of our optimization algorithm in finding the best fit values and indicates our

ability to fit actual stellar data.

The optimizations performed so far have used a number of idealizations. First, the

dwarf galaxy is described by an analytical model whose parameters are altered. The progen-

itor of the Orphan Stream might not be well represented by a Plummer model, and the stellar

distribution and/or dark matter distribution might not be spherically symmetric. Secondly,

we assume the Milky Way galaxy potential is known exactly. We use the axisymmetric

time-independent model that led to the best orbit fit to the Orphan Stream. There may be

other models which lead to a better fit which were not tested by Newberg et al. (2010), or

are a more realistic representation of the Milky Way. Finally, we place the dwarf galaxy on

a fixed, predefined orbit, which is also uncertain.

Fitting the Milky Way galaxy model parameters and the orbital parameters at the same

time as the dwarf galaxy parameters would be advantageous. The algorithm can be expanded

to accommodate the new parameters straightforwardly. New metrics of comparison will be

required to constrain the goodness of fit with the additional parameters. The histograms
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will also need to be expanded to accommodate the new information. In addition to fitting

the Milky Way model parameters, different potential models can be implemented to study

the effects on the fit. We would also like to implement more models for the dwarf galaxy

such as the generalized Hernquist model (Zhao, H., 1995), the Navarro-Frank-White model

(NFW, Navarro et al. (1997)), and the Einasto profile (Retana-Montenegro et al., 2012).

A full error analysis must also be performed for the fitted values to the simulated and

stellar data. We have described the use of a Hessian matrix in our determination of the error

in the fitted values to our model for the stellar data. We have used this method to determine

the error in the fitted dwarf galaxy parameters. We also need to evaluate the influence of

systematic error on the accuracy of our fitted values. In determining the systematic error

to our fits, we will also need to explore the effect of each fixed parameter used throughout

the algorithm. These include the range of forward times scanned to find the best likelihood,

the number of iterations used in rejection sampling, the effect of inexact orbital parameters,

the Milky Way potential, the timestep size, and the softening parameter, among others. We

will need to alter each parameter to determine how they affect the likelihood values.

We place the dwarf galaxy in orbit around a static representation of the Milky Way

galaxy. Such a placement assumes the evolution of the Milky Way galaxy and the Universe

has already taken place. In reality, dwarf galaxies form and disrupt in a universe that is

constantly evolving. However, the Milky Way is thought to have fully formed over 10 Gyr

ago (Krauss & Chaboyer, 2003; Cowan et al., 2002; del Peloso et al., 2005), long before the

disruption of the Orphan Stream progenitor began. We do make the assumption that the

Milky Way potential has not significantly changed since its formation, other than acquiring

satellites. The largest structures and subhalos, such as the LMC, may have an effect on the

orbit of the dwarf galaxy and even on the motion of the Milky Way. The effects of subhalos on

the dwarf galaxy disruption is currently being explored using N-body realizations of several

subhalo models. We are also investigating the impact of having the Milky Way move in the

presence of large structures, such as the LMC, while the dwarf galaxy is disrupting. We

would eventually like to simultaneously fit multiple dwarf galaxies to several tidal streams.

This would be especially useful in constraining the form of the Milky Way Galaxy model,

and its associated parameters.

We have also considered the possibility that the sudden placement of the dwarf galaxy

in the presence of the Milky Way potential can cause tidal shocks in the dwarf galaxy. Such
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shocks could lead to evaporation of the dwarf galaxy, as particles fly off at high speeds. To

study this, the Milky Way potential was ramped with the dwarf galaxy’s center of mass

and momentum held fixed. This was meant to allow the dwarf galaxy to relax in place,

acclimating to the comparably large Milky Way potential. This method worked best when

the ramping period was small compared to the simulation time; long ramping times often

resulted in tidal stripping of the dwarf galaxy. Surprisingly, ramping did not significantly

change the N-body simulations so it was not included in our algorithm.

We have also extensively studied the effects of dynamical friction on the dwarf galaxy

disruption. It was discovered that because of the predicted low mass of the Orphan Stream

progenitor, 107 M�, dynamical friction does not have a notable impact on the disruption and

orbit of the dwarf galaxy. We found that dynamical friction becomes more significant when

the mass of the dwarf galaxy exceeds 109 M�, at which point the dwarf galaxy experiences

drag, resulting in orbital decay.

9.1.1 Future Algorithmic Endeavors

We plan to extend the MilkyWay@home algorithm so that the orbit of the Orphan

Stream and the properties of the Milky Way potential can be fit simultaneously with the

properties of the progenitor dwarf galaxy. In order to accomplish this, we are in the process

of refactorizing the algorithm which generates the simulated histograms, and the layout of

the histograms themselves. The data structure currently makes a single histogram, and for

each bin derives all the information needed for the likelihood calculation. Instead, we plan

to make several instances of a histogram, each with their designated values that will be used

for the corresponding likelihood function. These changes will not only allow us to expand

the number of fit parameters, but will also allow us to use different binning arrangements for

the density distribution information, the dispersion information, and any other new values

added to the histogram. This may become important as the project is expanded to fit more

parameters involved with the orbit, the Milky Way potential, and even simultaneously fitting

other tidal streams.

We are currently building and expanding the test suite of the N-body algorithm. This

is especially important for the continuity of the N-body project. As more students are

beginning to develop production algorithms, there needs to be a systematic way of making

sure each component of N-body behaves in the expected manner.
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A large portion of MilkyWay@home volunteers use Graphic Processing Units (GPUs)

to crunch workunits. Currently, only the Separation application has a working GPU version.

We would like to finish work on a N-body GPU application. This would vastly increase

the number of users that can work on N-body workunits, and thus the computational power

devoted to the N-body application. This will become more and more necessary as we expand

the number of parameters that are fit. More parameters means more results from volunteers

are needed for the optimization.
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A Algorithmic Options

This section describes the N-body algorithmic options present, which may be instru-

mental for future researchers using the N-body code package. In this chapter we describe

the parameter file which is sent to users and acts as a front end to our simulations. We

also describe the many developer options which were implemented by the author that can

and have been utilized for various purposes. These options ‘open up’ the algorithm package,

allowing for many different types of study apart from the main goal of determining the dark

matter content of dwarf galaxies.

While many of these options are utilized through the parameter files, some are de-

termined from the command line. There are the numerous flags that can be set, both at

the moment of compilation of the algorithm and at run time. Some of these flags will be

described here.

We will also give the command line requirements for the compilation and running of

the N-body application of the MilkyWay@home code package.

A.1 Parameter File

The parameter files provide a sort of front end through which a user can set various

options for the simulation. The parameter files are scripts written in the LUA scripting

language. They are interpreted by the main N-body algorithm which is written mostly in

C. The ‘LUA files’ allow for a convenient way of changing algorithm options without having

to recompile the MilkyWay@home algorithm package. There are several types of LUA files

which can be used. The two main classes are the client side LUA files and the developer

LUA files. The client side LUA file provides the most basic of options. Only the options

absolutely necessary for running a simulation are present. The developer LUA files provide

far more options, only useful to N-body developers and users using the algorithm locally

(not on MilkyWay@home). In order to use the client side LUA files, the algorithm must be

built with developer options off. The client side LUA files have the general naming scheme

of “EMD v172 .lua” where “172” is the version number, which is changed when a new

version of the algorithm is released, and the indicate any addition information about that

specific LUA file. The developer LUA files have the naming scheme “for developers .lua”,

Portions of this chapter are in preparation to be submitted to: S. Shelton, “Reconstructing the Orphan
Stream Progenitor with MilkyWay@home Volunteer Computing,” ApJ.
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where the is again any other information about that specific LUA file.

Below, we describe the various options present in the developer LUA files. Since all

options in the client side LUA files are also present in the developer LUA files, this provides

a complete list.

A.1.1 Standard Model Settings

The standard settings are given in Table A.1 below. They control the version of the

algorithm to use, the integration method, and the setting of the simulations. It also provides

options for the type of model being utilized.

Table A.1: Simulation model options available in the LUA files.

LUA File - Model Settings
Setting Description

nbodyMinVersion The lowest version number of the algorithm that will be
accepted for use with this parameter file.

use tree code true; false. Use the Barnes-Hut tree algorithm for force
calculations. False uses the exact force calculations.

run null potential true; false. True runs the simulation without the Milky
Way potential, placing the simulation at the origin, in
empty space.

totalBodies any integer. The number of bodies used in the simula-
tion when using a dwarf galaxy

ModelComponents 2;1;0. The number of components the model has. 2
for the two component Plummer model. 1 for the sin-
gle component Plummer model. 0 turns off the dwarf
model.

manual bodies true; false. Uses a user inputted list of bodies in the
simulation. Can be used with a dwarf model or by itself.

A.1.2 Histogram Options

There are several options and adjustments that can be made that alter the creation

of the histogram. They include the area in the sky in which the histogram can be made,

the degree to which outliers are rejected, and the transformation angles for the stream being

investigated. These are given in Table A.2 below.
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Table A.2: Histogram settings available in the LUA files.

LUA File - Histogram Settings
Setting Description

lda bins Number of Λ bins to use
lda lower range;
lda upper range

The Λ bin interval over which to make the histogram.
Any interval between [-180,180]

bta bins Number of β bins to use. Usually 1
bta lower range;
bta upper range

The β bin interval over which to make the histogram.
Any interval between [-180,180]. Usually a small interval
centered around the origin

SigmaCutoff The number of σ used for outlier rejection in calculating
dispersions

Correction The correction factor required for correcting the prob-
ability distribution due to outlier rejection. Value is
determined by the σ cutoff used and must be calculated
by the user. Note: used to correct σ2.

phi;theta;psi Found in the makeHistogram() function. Transforma-
tion angles for the Orphan Stream as taken from New-
berg et al. (2010)

A.1.3 Likelihood Options

There are also options that can be adjusted for the comparison algorithm. They

include the method used for the geometry component of the likelihood, which dispersion

components to use, β, line-of-sight velocity, both or neither, and controls over the best

likelihood calculation. These are listed in Table A.3 below.

A.1.4 Other Developer Options

There are a number of other options that are primarily used by and are most useful

to developers. They have proven extraordinarily useful in debugging and/or testing new

algorithms. They can also be used when running a simulation for purposes other than an

optimization. For example, using some of these options, the algorithm has been used to

study the effects of dynamic friction on dwarfs over time, simulating the orbit of a group of

stars in the Milky Way disk, among others. These are listed in Table A.4 below.
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Table A.3: Comparison algorithm options available in the LUA files

LUA File - Likelihood Settings
Setting Description

nbodyLikelihood
Method

Histogram geometry component comparison method.
Only EMD should be used. For a complete list of al-
ternatives see the comparison algrotihm. ex: ‘EMD’;
‘Poisson’; ‘ChisqAlt’; ‘KullbackLeibler’

use best
likelihood

true; false. Whether or not to use the best likelihood
algorithm as described in Chapter 6.

best like start The fraction of the entire simulation after which the best
likelihood algorithm starts. Decimal between [0;1]

use beta disps true; false. Whether or not to use the β dispersion com-
ponent of the comparison algorithm.

use vel disps true; false. Whether or not to use the line-of-sight veloc-
ity dispersion component of the comparison algorithm.
Can be used in conjunction with the β dispersion com-
ponent.



101

Table A.4: Other developer options available in the LUA files.

LUA File - Developer Options
Setting Description

print reverse
orbit

true; false. prints the initial reverse orbit integration to
a file

print out
parameters

true; false. prints out the input parameters in simulation
and solar units

useMultiOutputs true; false. Algorithm can produce multiple coordinate
outputs. This turns that option on

freqOfOutputs The frequency of how often the simulation writes a
coordinate output. Number represents the number of
timesteps between outputs.

timestep control true; false. User can manually control the number of
timesteps the simulations runs. This option should be
used with care

Ntime steps The number of timesteps the simulation will run. Any
integer between 0 and the number of timesteps the sim-
ulation should have run. Can be set to 0, which will not
run any integration. Any outputs will be of initial body
arrangement

A.1.5 Milky Way Potential Struct

The makePotential() function in the lua files determines the Milky Way potential model

used. It creates a struct object which requires three components, one for each component

of the Milky Way potential. The three listed components are ‘spherical’, ‘disk’, and ‘halo’.

The ‘spherical’ component is used for the central bulge, the ‘disk’ component is used for the

stellar disk, and the ‘halo’ component is used for the dark matter halo. For each component

a model is chosen and the required model parameter values are listed. An example of how

this struct object is created is given below:

Table A.5: Struct to determine the Milky Way potential.

Milky Way Potential Struct
return Potential.create{

spherical = Spherical.spherical{ mass = , scale = },
disk = Disk.miyamotoNagai{ mass = , scaleLength = , scaleHeight = },
halo = Halo.logarithmic{ vhalo = , scaleLength = , flattenZ = } }
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Where the gray boxes indicate where input values should be placed. Instead of this struct, a

nil value can be returned, which would then mean the simulation will be performed in empty

space.

A.1.6 The Context Struct

The makeContext() function returns a struct which sets the many required variables

needed in the simulation. Many of the developer options available are sent into the simulation

using this struct. Other than the previously listed developer options, there are two other

options that are sent into the simulation using this struct that are not generally altered.

The first is ‘useQuad’, which determines whether or not to use quadrapole moments in the

gravitational interactions between bodies. This option is normally set to true. The other

is ‘theta’, which sets the θ parameter used by the Barnes-hut tree algorithm as previously

described is Section 5.3. This value is normally set to 1. The struct is of the form as shown

below. It is shown in its entirety because of the specific formatting of the struct members.
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Table A.6: Struct to determine the Context.

Simulation Context Struct
return NBodyCtx.create {

timeEvolve = evolveTime,
timestep = get timestep(),
eps2 = calculateEps2(totalBodies, soften length ),
criterion = criterion,
useQuad = true,
useBestLike = use best likelihood,
BestLikeStart = best like start,
useVelDisp = use vel disps,
useBetaDisp = use beta disps,
Nstep control = timestep control,
Ntsteps = Ntime steps,
BetaSigma = SigmaCutoff,
VelSigma = SigmaCutoff,
BetaCorrect = Correction,
VelCorrect = Correction,
MultiOutput = useMultiOutputs,
OutputFreq = freqOfOutputs,
theta = 1.0 }

The function determines the ‘soften length’ variable, the ‘center of mass’ scale length,

before sending it into the calculateEps2() function, which calculates the softening parameter

as described in 5.5. The get timestep() function is also in the parameter files. It deter-

mines the timestep as described in Section 5.4. The variable ‘criterion’ is determined by the

developer option ‘use tree code’ and is equal to either ‘TreeCode’ or ‘Exact’.

A.1.7 Setting the Initial Bodies

The makeBodies() function is responsible for the reverse orbit calculation and the dwarf

galaxy initialization. The phase space location where the initial dwarf model is placed at the

beginning of the simulation as described in Section 2.2 is determined by the reverseOrbit()

function in the N-body algorithm. The function call is similar to the structs described in the

preceding sections. It takes in the Milky Way potential model, the Galactocentric Cartesian

position and velocities of the starting location of the reverse orbit, the evolution time, and

the timestep.
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Table A.7: Function to determine the reverse orbit position.

Reverse Orbit Function
finalPosition, finalVelocity = reverseOrbit {

potential = potential,
position = lbrToCartesian(ctx, Vector.create(l, b, r)),
velocity = Vector.create(vx, vy, vz),
tstop = revOrbTime,
dt = ctx.timestep / 10.0 }

The variables ‘finalPosition’ and ‘finalVelocity’ are the vectors storing the phase space coor-

dinates for where the dwarf model should be placed. The values for (l,b,r) and (vx, vy, vz)

above are listed as the variables ‘orbit parameter ’ in the lua files and the values are taken

from Newberg et al. (2010). The function lbrToCartesian() is a function written in the source

code which converts the (l,b,r) coordinates to Galactocentric Cartesian coordinates. In the

case that the simulation is taking place in empty space, the ‘finalPosition’ and ‘finalVelocity’

variables are set to (0,0,0), the origin in phase space.

The dwarf model is also determined by a function call. Depending on the model chosen,

the function called and parameters sent differ. For the single component Plummer model,

the function call is as follows:
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Table A.8: Function that generates a single component Plummer model.

Single Component Plummer Model
firstModel = predefinedModels.plummer {

nbody = totalBodies,
prng = prng,
position = finalPosition,
velocity = finalVelocity,
mass = mass l,
scaleRadius = rscale l,
ignore = false }

The dwarf model is stored in the variable firstModel. As this indicates, multiple models

can be made, each using this type of function call. All the models are returned by the

makeBodies() and are subsequently sent into the simulation. The ‘prng’ is the link to the

random number generator. The ‘ignore’ parameter is a flag used to mark the matter type

of the bodies. For single component models, the baryonic input parameters are used for

the dwarf model. For the two component model, the function call differs slightly as shown

below:

Table A.9: Function that generates a two component Plummer Model.

Two Component Model
firstModel = predefinedModels.mixeddwarf {

nbody = totalBodies,
prng = prng,
position = finalPosition,
velocity = finalVelocity,
comp1 = Dwarf.plummer{mass = mass l, scaleLength = rscale l},
comp2 = Dwarf.plummer{mass = mass d, scaleLength = rscale d},
ignore = true }

As the above shows, the model used for each component of the dwarf has to be specified.

Currently, only the Plummer model has been tested in the way described in Chapter 4. The

makeBodies() function also allows for a user inputted list of bodies that can be used in the

simulation by itself or in conjunction with a dwarf model. The function call to use a user

inputted list of bodies is as follows:
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Table A.10: Function for generating a user inputted model.

User Inputted Model
manualModel = predefinedModels.manual bodies {

body file = manual body file }

Where ‘manual body file’ is the file name of the body list. The manual model option is only

available to developers. It provides a way to solve the equations of motion in very specific

cases that may not be related to the main project goals. For example, this option can and

has been used to simulate the motion of groups of stars around the Milky Way, or to create

halo substructure to influence the orbit of a dwarf model.

In makeBodies(), depending on the chosen options from Section A.1.1, the returned

value may be a single plummer model or a two component model. Furthermore, each model

can be returned by itself or with a user inputted list of bodies. This can easily be expanded to

create several models for the simulation to run simultaneously by calculating the appropriate

reverse orbit values, creating new model function calls, and returning them.

A.1.8 Taking in Parameters

The developer parameter files expect a minimum of 6 input parameters. The first is

the backward evolution time in gigayears, and the second is a deprecated parameter, which

can be set to any value. The second value was a time ratio used to determine the forward

evolution time, which was made defunct by the best likelihood calculation. However, this

parameter must still be included because it is expected by the MilkyWay@home server. The

third parameter is the baryonic scale radius, in kiloparsecs, and the fourth is the radius ratio.

The fifth parameter is the baryonic mass, in structural units, and the sixth is the mass ratio.

These values are each rounded to 9 decimal places when taken into the parameter files.

This is done because the command line precision differs between some machines, leading to

slightly different parameters and thus different likelihood values. The seventh parameter is

optional and is the name and path to the user inputted body list. This can only be included

in the developer parameter file.

The random number seed can also be sent in by command line, as will be described in

the following section. Whether it is sent in or not, the seed is hardcoded in the parameter

file where the input parameters are read in.
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A.2 Usage

The MilkyWay@home algorithm is a free and open source package. It is publicly avail-

able on Github at https://github.com/Milkyway-at-home. There are several repositories.

The ‘milkywayathome client’ repository contains all of the code required to run N-body on

a single computer. The ‘milkywayathome workunits’ repository contains sample parameter

files used in MilkyWay@home. The ‘milkyway server’ repository contains the code that runs

the server which sends out and receive workunits. The ‘tao’ repository contains a version

of the Toolkit for Asynchronous Optimization (TAO), which are the various optimization

algorithms. The ‘boinc’ repositories contain versions of the Berkeley Open Infrastructure

for Network Computing (BOINC) algorithm that enables us to utilize volunteer computing.

We describe how to download, compile and run the N-body application contained in the

‘milkywayathome client’ repository using a linux terminal.

A.2.1 Downloading the Package

In order to download the client repository, ‘git’ package manager must be installed.

After copying the url of the repository, in a linux terminal, the repository can be downloaded

by running:

Table A.11: Command for downloading the MilkyWay@home client code pack-
age.

Download Command
$git clone https://github.com/Milkyway-at-home/milkywayathome_client.git

Downloading the other repositories can be done in a similar fashion, using the url for

that repository. After the repository has been downloaded, navigate into the directory. The

initial clone downloads only our base algorithm. The repository also contains links to several

other repositories as submodules which also need to be downloaded. This is done by running

the commands:

The first command initializes the links to the submodules. The second performs the down-

load, similar to the git clone command.
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Table A.12: Command for downloading submodules contained within the Milky-
Way@home client code package.

Update Command
$git submodule init
$git submodule update –recursive

A.2.2 Compiling

It is recommended to compile the MilkyWay@home algorithm in a separate directory

than the one in which it was downloaded. In order to compile the algorithm CMAKE must

be installed on the machine being used. CMAKE automatically generates the makefiles

necessary to build the algorithm. To build the binaries needed for running the algorithm

first navigate into the directory in which the build will take place. Running cmake, followed

by compilation flags, and then the path to the algorithm directory will create the makefiles.

After that is complete, running make in that same directory will build the algorithm binaries.

There are many compilation flags. The primary flags are given in Table A.13. A complete

listing of the options and associated flags can be found in the various CMakeLists files in

the algorithm.
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Table A.13: Important flags used in the compilation of the N-body algorithm.

Important Compilation Flags
Flag Description

-DNBODY DEV OPTIONS ON;OFF. Set to On in order to access developer options.
Off to use the client side parameter files

-DNBODY OPENMP ON;OFF. Build the algorithm single threaded (OFF) or
multithreaded (ON).

-DNBODY STATIC ON;OFF. Build the binary using static libraries. This
should be set to ON to reduce machine library depen-
dencies.

-DNBODY GL ON;OFF. Builds the visualizer. Additional package in-
stallations required, including open gl.

-DSEPARATION ON;OFF. Option for building the Separation code. Can
be excluded. Defaults to ON.

-DNBODY ON;OFF. Option for building the N-body code. Can be
excluded. Defaults to ON.

-DCMAKE BUILD TYPE Debug; Release; RelWithDebInfo; MinSizeRel. Set to
Release for a normal build which can be sent to clients.
The other options builds the binary with debugging in-
formation.

An example compilation command which builds only the multithreaded N-body appli-

cation statically, with the developer options on is as follows:

Table A.14: Command for compiling the MilkyWay@home code package.

Compilation Command
$cmake -DCMAKE BUILD TYPE=Release -DNBODY DEV OPTIONS=ON

-DNBODY GL=OFF -DNBODY STATIC=ON -DSEPARATION=OFF
-DNBODY OPENMP=ON ../milkywayathome client/

$make

The make commands builds the algorithm using the makefiles generated by CMAKE. There

is an optional flag ‘-j’ that can be added to the ‘make’ command which runs the build multi-

threaded. This builds the code much faster. It is recommended that this be excluded during

the first build of the algorithm.
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A.2.3 Running a Simulation

Once the algorithm is compiled, a simulation can be run. There are also a number of

flags which can be used when running the simulation. Some are required and some provide

different options to the user. Below, in Table A.15, is a list of the main flags used in the

simulation:
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Table A.15: Important flags used in the running of the N-body algorithm.

Important Runtime Flags
Flag Description

–help Lists all the possible runtime flags and descriptions
-f Required. Path and file name of the LUA file being used.
-o Path and file name instruction for the simulation to place the coordinate

output file. Not required if other output selected.
-z Path and file name instruction for the simulation to place the histogram

file. Not required if other output selected.
-h Path and file name of the input histogram file used in comparing to

simulation. Not required.
-n Number of threads to use in the simulation (If compiled with OPENMP).

Not required. If not included, system sets number of threads
-x; -b; Only one option can be used. Instructions on coordinate output format.

Not required. No flag means lbr positional output. -x for Cartesian
positional output. -b for both.

-P Print the percentage progress of the simulation to standard output. Not
required.

-u Runs the visualizer. May need additional package installation and com-
pilation with OPENGL. Not required.

-s; -S; -V; -D Used when comparing two histograms without simulation. Flag for the
second histogram. Only one option can be used. -s matches the his-
togram without dispersion components. -S for β dispersions only. -V for
velocity dispersions only. -D for both β and velocity dispersions.

The flags are listed with their required inputs after calling the binary. After the flags,

a list of the require input parameters should be given. The required input parameters can

changed depending on the parameter (LUA) file selected, so care must be used when listing

the input parameters. At least one output option must always be selected when running

a simulation. If a input histogram is not given, the simulation will run and produce the

selected outputs without running the comparison algorithms. The coordinate outputs are

only used by developers. We have found it useful to provide options on changing the format

of those outputs. With the implementation of the dispersion comparison algorithms, options

on which dispersion algorithm to use were implemented. Two example run commands are

given below.
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Table A.16: Command for running an N-body simulation.

Run Command
$ ./PATH TO BINARY/BINARY NAME

-f LUA FILE
-h INPUT HISTOGRAM FILE
-z OUTPUT HISTOGRAM FILE
-o COORDINATE OUTPUT FILE
-b -p -n NUMBER OF THREADS
INPUT PARAMETER LIST

This command will take in a histogram file provided by the user, run a simulation and

compare the input histogram with the simulation. Both the simulation histogram and the

coordinate output file will be written to the user machine. The coordinate output will have

both lbr and Cartesian positional outputs. As the simulation runs, the percent progress

will be written to standard out. Note, the entire command should be put into the terminal

without line breaks, and with no spaces in the file names. It is written this way here for

readability. Another command is given below.

Table A.17: Command for comparing two histograms without running a simu-
lation.

Histogram Comparison Command
$ ./PATH TO BINARY/BINARY NAME

-h INPUT HISTOGRAM FILE 1
-S INPUT HISTOGRAM FILE 2

This command will take in two histograms and compare them. The comparison will use β

dispersions only. The same note as the previous command applies here as well.
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B Computationally Simplified Dispersion

Here we derive the computationally simplified version, Equation 6.4, of the dispersion,

Equation 6.3. By using the former equation, the average in each bin does not need to be first

calculated in an initial loop, greatly reducing the amount of computation needed. Instead,

the sum can be performed directly. We perform this derivation for a general parameter, α.

In our algorithm this can be either line-of-sight velocity or β. We begin with the dispersion

in the parameter:

σ2 =
1

N − 1

N∑
i

(αi − ᾱ)2. (B.1)

This can be expanded to:

σ2
α =

N∑
i

α2
i

N − 1
− 2ᾱ

N − 1

N∑
i

αi +
N∑
i

ᾱ2

N − 1
, (B.2)

where ᾱ is simply a number, and can be moved out of the summations. Therefore, the final

summation equates to N sums of 1, and is thus equal to N :

σ2
α =

N∑
i

α2
i

N − 1
− 2Nᾱ

N − 1

N∑
i

αi
N

+
Nᾱ2

N − 1
. (B.3)

Note, we have also inserted a factor of N/N in the second summation. With this insertion,

the middle summation is equal to ᾱ since ᾱ =
∑N

i αi/N . We then have:

σ2
α =

N∑
i

α2
i

N − 1
− 2Nᾱ2

N − 1
+

Nᾱ2

N − 1
. (B.4)

Thus, we arrive at Equation 6.4:

σ2
α =

∑
i

α2
i

N − 1
−
(

N

N − 1

)(∑
i

αi
N

)2

. (B.5)

C Error in Dispersion

We derive here the theoretical error in the dispersion equation. We begin first by

defining the two rules of which we shall make primary usage. The first is the propagation of

error when squaring a function with error:
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(f ± δf )2 = f 2 ± 2fδf . (C.6)

The second is the propagation of error when adding two values with error:

(A± δA) + (B ± δB) + ... = (A+B + ...)±
√
δ2
A + δ2

B + .... (C.7)

We perform this derivation for a general parameter, α. In our algorithm this can be

either line-of-sight velocity or β. Starting with the equation for dispersion:

σ2 =
1

N − 1

N∑
i

(αi − ᾱ)2, (C.8)

which is rewritten to include the errors:

σ2 ± δσ2 =
1

N − 1

N∑
i

[(αi ± δαi)− (ᾱ± δᾱ)]2 . (C.9)

Using the addition rule, this can then be written as:

σ2 ± δσ2 =
1

N − 1

N∑
i

[
(αi − ᾱ)±

√
δ2
αi

+ δ2
ᾱ

]2

. (C.10)

By definition, the error in the coordinate is αi ± σ, so δαi = σ. The error in the mean is

ᾱ± σ√
N

, so δᾱ = σ√
N

. Inserting these values and simplifying:

σ2 ± δσ2 =
1

N − 1

N∑
i

[
(αi − ᾱ)± σ

√
N + 1

N

]2

. (C.11)

Using the squaring rule:

σ2 ± δσ2 =
1

N − 1

N∑
i

[
(αi − ᾱ)2 ± 2(αi − ᾱ)σ

√
N + 1

N

]
. (C.12)

This summation is now just a sum of (A + B + ...). Therefore, the equation becomes:

σ2 ± δσ2 =
1

N − 1

[
N∑
i

(αi − ᾱ)2

]
± 1

N − 1

√√√√ N∑
i

(
2(αi − ᾱ)σ

√
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N

)2

. (C.13)
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This then can be written:

σ2 ± δσ2 =
1

N − 1

[
N∑
i

(αi − ᾱ)2

]
± 2σ

N − 1

√
N + 1

N

√√√√ N∑
i

(αi − ᾱ)2. (C.14)

The summation in the error value is a simple rearrangement of the dispersion, Equation C.8:

σ2 ± δσ2 =
1

N − 1

[
N∑
i

(αi − ᾱ)2

]
± 2σ

N − 1

√
N + 1

N

√
σ2(N − 1). (C.15)

Simplifying:

σ2 ± δσ2 = σ2 ± 2σ2

√
N + 1

N − 1

1

N
. (C.16)

However, this is the error in σ2. Using the squaring rule, we have σ2±δσ2 = σ2±2δσσ where

σ ± δσ. Therefore, the equation above becomes:

σ2 ± 2δσσ = σ2 ± 2σ2

√
N + 1

N − 1

1

N
. (C.17)

Comparing the left and right sides of the equation, it is apparent that:

δσ = σ

√
N + 1

N − 1

1

N
. (C.18)

Finally, the error in the theoretical σ is given by:

σ ± σ
√
N + 1

N − 1

1

N
. (C.19)

D Coordinate Transformations

D.1 Reverse Orbit

The (l,b,r) coordinates of the Orphan Stream position must be converted to Galacto-

centric Cartesian in order to perform the reverse orbit calculations. The conversions from

(l,b,r) to heliocentric Cartesian is given by:
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x� = Rcoslsinb,

y = Rsinlsinb,

z = Rcosb.

(D.20)

The Galactocentric coordinates are then found by shifting the x-coordinate, x = x�− 8kpc.

D.2 Histogram

To create a histogram, the Galactocentric coordinates used in the simulation must be

transformed to Orphan (Λ, β). The Cartesian coordinates are shifted to be centered around

the Sun by shifting the x-coordinate: x� = x+8kpc. These coordinates are then transformed

to (l, b, r):

l = tan−1

(
y

x�

)
,

b = tan−1

(
z√

x2
� + y2

)
,

r =
√
x2
� + y2 + z2.

(D.21)

Finally, these coordinates are rotated to align with the Orphan Stream using a rotation

matrix given by Newberg et al. (2010):


cos β cos Λ

cos β sin Λ

sin β

 = M


cos b cos l

sin b sin l

sin b

 , (D.22)

where M is given by:

M

=


cos ψ cos φ− cos θ sin φ sin ψ cos ψ sin φ+ cos θ cos φ sin ψ sin ψ sin θ

−sin ψ cos φ− cos θ sin φ cos ψ −sin ψ sin φ+ cos θ cos φ cos ψ cos ψ sin θ

sin θ sin φ −sin θ cos φ cos θ

 .

The rotation angles are unique to a tidal stream. Since we are currently investigating the

Orphan Stream, these angles are given by (φ, θ, ψ) = (128 ◦. 79, 54 ◦. 39, 90 ◦. 70) (Newberg
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et al., 2010).

When a histogram is created, it is bound between a range in (Λ, β). Therefore, only

bodies in this range will be included in the histogram. The histograms are usually one

dimensional, binning the density along the stream, Λ.

E χ2 Probability Metric for the Dispersion

We briefly mentioned in our description of the dispersion component of the likelihood

that we previously used a different probability function to grade the fitness of the stream

width. This method also led to Equation 6.17, but its derivation and interpretation differ.

We calculated a σ difference between the dispersion in each corresponding bin of the two

sets of histograms, in a similar way as with the mass cost component. We then summed the

difference to calculate a χ2 value. The interpretation here was that we were comparing the

two histograms as a whole, and calculating a probability from the sum of the differences,

instead of finding the probability that each bin were the same dispersion and multiplying the

probabilities. Using the former interpretation required use of the χ2 probability distribution,

given by

f(x, k) =


x
k
2−1e−

x
2

2k/2Γ(k/2)
x > 1

0 x < 1
, (E.23)

where x is the N2
σ calculated previously, and k is number of bins in our histograms. In

practice, this function was scaled. In order to utilize the χ2 distribution for our purpose, we

first write it in log space:

ln(f(x, k)) =

(k
2
− 1) ln(N2

σ)− N2
σ

2
N2
σ > 0

0 N2
σ < 0

. (E.24)

Note, we have dropped all leading multiplicative coefficients and replaced x with N2
σ . The

coefficients scale the distribution values; dropping the coefficients is allowed because the

shape of the distribution is retained. The χ2 distribution as written here is shown as a solid

black line in Figure E.1. The plots show the probability that two histograms are the same

given a measured Nσ as a function of N2
σ and Nσ.

The logarithm of the other two probability distributions described so far, that produced
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by the EMD and the mass cost function, have a peak of zero. In fact, the EMD was scaled

for this to occur. This is not the case with the χ2 probability distribution as so far written.

Therefore, we must scale the χ2 distribution to agree with the other components of the

likelihood. Therefore, the ln(χ2) distribution is shifted down by the peak value. The peak

occurs at N2
σ,peak = 2(k

2
− 1). Shifting the distribution then augments Equation E.24 by

adding to it the function value at N2
σ,peak, yielding the following:

ln(f(x, k)) =

(k
2
− 1) ln(N2

σ)− N2
σ

2
− (k

2
− 1) [ln (k − 2)− 1] N2

σ > 0

0 N2
σ < 0

. (E.25)

This is shown as a dashed blue line in Figure E.1. Another issue with this distribution

lies in the shape. As the N2
σ decreases, the probability increases until it reaches the peak,

after which the probability quickly decreases. This seems counterintuitive because a smaller

value of N2
σ corresponds to less of a accumulative difference between the two histograms

and should correspond to a higher probability that they are the same. The peak of the

distribution occurs at k - 2, which is the degrees of freedom in our histograms. According to

the distribution, a N2
σ less than this is indicates the two histograms are more similar than

could be expected, given the errors. However, when using test data created with the same

seed as the simulations, we can, in theory, recover the exact answer, with a N2
σ of zero. Since

we do not want the likelihood to be worse for histograms that are more similar, we fix the

probability for N2
σ < (k−2). We replace it with a piecewise constant value set to the peak of

the probability distribution. This is shown by the dotted red line in Figure E.1. Therefore,

instead of this component of the likelihood reporting a worse and worse match for more

and more similar distributions, it will not contribute at all. In effect, this component of the

likelihood helps guide the optimization algorithm through the likelihood surface while the

simulated distribution is “very” different from the comparison distribution. The EMD and

mass cost component will help “fine tune” the distribution once it is similar enough to the

comparison distribution.

The final version of the the χ2 distribution used is then given by a piecewise function:
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ln(f(x, k)) =

(k
2
− 1) ln(N2

σ)− N2
σ

2
− (k

2
− 1) [ln (k − 2)− 1] N2

σ > k − 2

0 N2
σ < k − 2

. (E.26)

From this description, it can already be seen that the method described in Section 6.4 is

far simpler, and does not require changing of the actual shape of the probability distribution.

It is also more consistent with the mass component, in that we find the probability that two

values are different, the dispersions in each bin, and then multiply the probabilities together.

In that way, the final likelihood can also be interpreted as a 2 + N component likelihood

function, where N is the number of bins in our histograms.
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Figure E.1: Modification of the χ2 distribution with a k value of 50. Solid Black:
The original χ2 distribution. Dashed Blue: χ2 distribution as with the solid
black but shifted down so the peak is at a probability of zero. Dotted Red: χ2

distribution as with the dashed blue but with the probabilities set to a value of
zero for N2

σ < k − 2.
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F Line-of-Sight Velocity Dispersion with χ2 Distribution

We present here results fitted using the line-of-sight velocity dispersion. This was

done with the previous version of the dispersion likelihood value, utilizing the χ2 probability

distribution, a description of which can by found in Appendix E.

The first test was to recover the parameters used to create a test histogram where the

histogram was made using the same random number seed as the simulations. The results of

these runs are given in Table F.18 which show the values used to create the simulated data

set, the search range, and the values recovered from MilkyWay@home for 5 identical runs.

As the table shows, we were able to recover all of the parameters quite well.

Table F.18: Tables of best fit values found by the differential evolution search
algorithm on MilkyWay@home. Each instance has identical search parameters
but are independent of each other. The provided data set was made with the
same seed as the simulations. These were all fit using the χ2 probability dis-
tribution to compare the line-of-sight velocity dispersions. The parameters are
the evolution time, the scale length of the baryonic component (RB), the radius
ratio (ξR), the baryonic mass (MB), and the mass ratio (ξM).

Parameters Evolve Time (Gyr) RB (kpc) ξR

Correct 3.95 0.2 0.2
Search Range [3.0 - 5.0] [0.1 - 0.5] [0.1 - 0.5]

Trial 1 3.961 0.196 0.203
Trial 2 3.975 0.193 0.189
Trial 3 3.975 0.205 0.223
Trial 4 3.965 0.208 0.233
Trial 5 3.956 0.199 0.2

Parameters MB (sim units) ξM Likelihood

Correct 12.0 0.2
Search Range [1.0 - 50.0] [0.01 - 0.95]

Trial 1 12.009 0.204 -1.552
Trial 2 12.06 0.172 -1.591
Trial 3 12.134 0.256 -1.344
Trial 4 12.134 0.275 -1.345
Trial 5 12.042 0.204 -1.296
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Our next step is to use a different random number seed for the optimization as for the

simulated data. These runs were more realistic as we would not know the ‘seed’ with which

the actual data was made. These are shown in Table F.19. As can be seen with this fitted

results, the line-of-sight velocity dispersion worked well in fitting the simulated data. It was

only when applying the algorithm to actual data that we encountered difficulty.

Table F.19: Tables of best fit values found by the differential evolution search
algorithm on MilkyWay@home. Each instance has identical search parameters
but are independent of each other. The provided data set was made with a
different seed from that of the simulations. These were all fit using the χ2

probability distribution to compare the line-of-sight velocity dispersions. The
parameters are the evolution time, the scale length of the baryonic component
(RB), the radius ratio (ξR), the baryonic mass (MB), and the mass ratio (ξM).

Parameters Evolve Time (Gyr) RB (kpc) ξR

Correct 3.95 0.2 0.2
Search Range [3.0 - 5.0] [0.1 - 0.5] [0.1 - 0.5]

Trial 1 3.951 0.210 0.181
Trial 2 3.936 0.204 0.182
Trial 3 3.939 0.202 0.183

Parameters MB (sim units) ξM Likelihood

Correct 12.0 0.2
Search Range [1.0 - 50.0] [0.01 - 0.95]

Trial 1 12.133 0.154 -1.548
Trial 2 12.085 0.142 -1.633
Trial 3 12.025 0.146 -1.348


