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Abstract

We propose and test a method for applying statistical photometric parallax to main-sequence turnoff stars in the Sloan
Digital Sky Survey (SDSS). Using simulated data, we show that if our density model is similar to the actual density
distribution of our data, we can reliably determine the density model parameters of three major substructures in the
Milky Way halo using the computational resources available on MilkyWay @home (a 20-parameter fit). We fit the stellar
density in SDSS stripe 19 with a smooth stellar spheroid component and three major streams. One of these streams is
consistent with the Sagittarius tidal stream at 21.1 kpc away, one is consistent with the trailing tail of the Sagittarius tidal
stream in the north Galactic cap at 48 kpc away, and one is possibly part of the Virgo Overdensity at 6 kpc away. We
find the 1o widths of these three streams to be 1.0 kpc, 17.6 kpc, and 6.1 kpc, respectively. The width of the trailing tail
is extremely wide (41 kpc full width at half maximum). This large width could have implications for the shape of the
Milky Way dark matter halo. The width of the Virgo Overdensity-like structure is consistent with what we might expect
for a “cloudlike” structure; analysis of additional stripes of data are needed to outline the full extent of this structure and

confirm its association with the Virgo Overdensity.
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1. Introduction
1.1. Milky Way Halo Substructure

The distribution of stars in the Galactic halo is dominated
by dwarf galaxies and tidal streams of stars that have been
stripped from them (see Figure 1 of Newberg et al. (2002), and
the “Field of Streams” from Belokurov et al. (2006)). These
substructures represent the recent minor merger history of the
Milky Way (Bullock & Johnston 2005), and they contribute to
the buildup of stars in the Milky Way stellar halo. Two or three
dozen tidal debris streams, most of which extend tens of
degrees or more across the sky, have been identified; the exact
number cannot be determined due to controversy over the
identity of tidal streams, particularly those discovered near the
Galactic plane, and because some streams are detected at low
enough significance that they are considered stream “candi-
dates.” In addition to streams, other substructures of ambiguous
origin (most notably “clouds”) continue to be discovered in the
Galactic spheroid.

For a review of tidal streams and clouds, see Grillmair &
Carlin (2016). A more recent list of streams and clouds
included in the “GALSTREAMS” Python Package can be
found in Table 4 of Mateu et al. (2018). More recent halo
substructures are identified in Li et al. (2016b), Sohn et al.
(2016), Grillmair (2017a, 2017b), Jethwa et al. (2017), and
Shipp et al. (2018). In particular, Shipp et al. (2018) identify
eleven new substructures in the Milky Way halo using data
from the Dark Energy Survey (DES; The Dark Energy Survey
Collaboration 2005, 2016).

Identification and measurement of tidal debris in the Milky
Way halo is useful for understanding structure formation and
galaxy assembly, and it has the potential to constrain the
density distribution of the Milky Way’s stellar halo. Methods
for measuring the halo shape from tidal streams have been, and
continue to be, developed (e.g., Law & Majewski 2010;

Koposov et al. 2013; Kiipper et al. 2015; Bovy et al. 2016;
Johnston & Carlberg 2016; Dierickx & Loeb 2017a; Sanderson
et al. 2017). In addition, the distribution of dark subhalos can
be measured by looking for stars ejected from tidal streams
(Siegal-Gaskins & Valluri 2008), stream heating (Johnston
2002) or stream gaps (Carlberg 2012). Pearson et al. (2017)
show that streams can also be used to constrain the rotation rate
of the Galactic bar.

These techniques to determine the dark matter distribution in
the Milky Way from tidal streams rely on accurate measure-
ments of the tidal debris itself, but since we discovered that
halo tidal streams are more numerous and complex than
originally thought, the association of particular stars with
particular tidal streams has become more ambiguous. For
example, Newberg et al. (2009) discovered that the blue
horizontal branch stars (BHBs) thought to be associated with
the southern portion of the Sagittarius (Sgr) dwarf tidal stream
in Yanny et al. (2000) are actually part of the Cetus Polar
Stream. The Sgr dwarf tidal stream, which is the most
prominent tidal stream in the sky, and the so-called
“bifurcated” Sgr stream that appears to split off from it, have
also caused confusion; for example, Newby et al. (2013)
suggested that the southern Sgr stream could be associated with
the “bifurcated” stream in the north, and the northern Sgr
stream could be associated with the “bifurcated” stream in the
south. These misidentifications and possible misidentifications
of stars in the most prominent halo streams underscore the
difficulties in counting and characterizing tidal streams.

1.2. Statistical Photometric Parallax

In this paper, we present an improved statistical photometric
parallax (Cole et al. 2008; Newberg 2013) method to measure
the spatial density of stars in the Milky Way stellar halo, using
turnoff stars from the Sloan Digital Sky Survey (SDSS; York
et al. 2000). Statistical photometric parallax is the use of
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statistical knowledge of the distribution of the absolute
magnitudes of stellar populations to determine the underlying
density distributions of those stars. This differs from photo-
metric parallax in that the distance to each individual star is not
determined.

The idea of using turnoff stars to trace Milky Way halo
substructure was introduced by Newberg et al. (2002). They
observed density substructure in the SDSS turnoff stars on the
Celestial equator and fit an absolute magnitude distribution to
their blue turnoff star tracers. In Cole et al. (2008), these tracers
and a simplified absolute magnitude distribution from Newberg
et al. (2002) were used to build a model of the Milky Way halo
and its substructure, and to complete preliminary fits to the
stellar density of the halo and the Sagittarius dwarf galaxy tidal
stream. Several years later, Newby et al. (2013) continued
working with this model and showed that a massive distributed
computing network, MilkyWay@home, could be effective in
constraining the parameters in the density models of tidal
streams. Taking advantage of this new computational power,
several optimizations were run on each stripe. Initially, the
fitting algorithms were allowed great freedom in selecting the
parameters. Later, the parameters were constrained based on
the results from neighboring stripes.

These previous studies successfully used statistical photo-
metric parallax to study the structure of the halo using SDSS
turnoff stars. SDSS turnoff stars, detected to a limiting
magnitude of g = 22.5, can be used to trace the structure of
the Milky Way to 45 kpc from the Sun. However, the turnoff
stars in a single stellar population, with the same color, can
differ in absolute magnitude by two magnitudes (producing a
distance error of a factor of 2.5). Photometric parallax (e.g.,
Juri¢ et al. 2008) is unusable with turnoff stars because
astronomers do not have a way to determine the distance to
individual stars with reasonable accuracy using photometry
alone.

It has been shown that the absolute magnitude distribution of
turnoff stars in halo globular clusters are surprisingly similar to
each other, over a metallicity range —2.3 < [Fe/H] < —1.2
dex and over ages ranging from 9 to 13.5Gyr (Newby
et al. 2011). Grabowski et al. (2013) showed that this similarity
holds even for the globular cluster Whiting 1, which is only
6 Gyrs old and has a metallicity of approximately [Fe/H] ~
0.6 dex (Carraro et al. 2007; Valcheva et al. 2015). This
surprising result, which comes about due to the age—metallicity
relation for Milky Way stars, makes turnoff stars very useful
for tracing the density of the stellar spheroid and outer disk.

In our work, we improve on the statistical photometric
parallax methods by implementing a better model for the
absolute magnitude of the tracer stars and their detection
efficiency, and by using better fitting methods on Milk-
yWay@home. In our implementation of statistical photometric
parallax, we find the parameters in a density model that make
the apparent magnitudes and angular positions of the observed
stars most likely, using a maximum likelihood estimator (MLE)
(Ivezi¢ et al. 2014). The statistical description of the absolute
magnitudes of the stellar tracers, and of the selection effects in
the data, make statistical photometric parallax somewhat
complex to apply. Because we are able to take all of these
effects into account, we can reliably measure density distribu-
tions in real data.

There are four parts to statistical photometric parallax: data,
a density model, an algorithm for measuring how well the
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Figure 1. The density of SDSS turnoff stars in the north Galactic cap. We
highlight stripe 19 in magenta and show p throughout this stripe in blue. There
is some overlap between the stripes, which appears in this figure as dark streaks
on the borders of the stripes. The four stripes lowest in latitude have a fainter
magnitude limit, which explains why they appear darker. In this plot, we can
see the major substructures in our data, including the Sagittarius stream, the
“bifurcated” stream, and the Virgo Overdensity, with relation to the stripe we
are fitting. Note that stripe 19 passes through the Sgr dwarf tidal stream and the
“bifurcated” stream, but is far from the highest-density region of the Virgo
Overdensity.

model fits the data, and an algorithm for optimizing parameters.
The algorithm that measures how well the model fits the data
includes the main sequence turnoff (MSTO) absolute magni-
tude distribution, as well as any observational biases. It has
taken us many years to perfect the algorithm that can
simultaneously fit the spatial density of several tidal streams
plus a smooth distribution to the SDSS MSTO stars; the
smooth distribution represents the sum of streams from small
satellites, old streams that are well-mixed in density, and stars
that were created during the collapse of the Milky Way, if any.

In this paper, we describe an improved algorithm for
characterizing the spatial characteristics of stellar streams in the
Milky Way halo using turnoff stars, and show that it is capable
of simultaneously recovering the characteristics from three tidal
streams plus a smooth halo component, using simulated data
designed to mimic the stellar density in the actual Milky
Way halo.

1.3. The Big Three Halo Substructures: The Sgr Tidal Stream,
The “Bifurcated” Stream, and the Virgo Overdensity

We will present preliminary results for one 2°5 wide SDSS
stripe (stripe 19) of data that cuts across the northern Galactic
hemisphere. Figure 1 shows the position of stripe 19 in the
SDSS northern footprint. The results from this stripe provide
measurements of the largest known substructures in the Milky
Way halo: the Sgr dwarf tidal stream, the so-called “bifurcated”
stream, and the Virgo Overdensity. Stripe 19 crosses the Sgr
dwarf tidal stream and the bifurcated stream, in a region of
the sky in which they are clearly separated. Given that stripe
19 is more than 20° from the densest portion of the Virgo
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Overdensity, it is uncertain whether a third substructure
measured here is in the tails of the Virgo Overdensity, or
whether it is associated with a new halo substructure. In
addition to three substructures, we fit smooth Milky Way halo
and thick disk distributions.

The Sgr dwarf galaxy was first discovered by Ibata et al.
(1995), who found evidence of a dwarf galaxy within 16 kpc of
the Galactic center, on the far side of the Milky Way, that was
thought to be in the process of tidally disrupting. The tidal
stream of stars stripped from this dwarf galaxy have since been
found to dominate the substructure of the Galactic halo (e.g.,
Newberg et al. 2002; Majewski et al. 2003; Belokurov et al.
2006; Hernitschek et al. 2017). Though the Sgr dwarf galaxy and
the stream of stars that have been tidally stripped from its
gravitational grasp have been studied extensively (see Law &
Majewski (2016), for a recent review); we are only starting to
understand the dynamical history of this present-day merger.

It has been a challenge to find a disruption model that
simultaneously fits the positions of the leading and trailing tidal
streams in the sky, the line-of-sight velocities of the stream
stars, and the observed extension of the trailing tidal tail to
~100 kpc from the Galactic center (Newberg et al. 2003;
Belokurov et al. 2014). Dierickx & Loeb (2017b) present a
recent simulation of the tidal debris that reproduces most of the
measurements of the position of the leading and trailing tidal
debris, including the distant stars in the trailing tidal tail and the
observed “spurs” at apogalacticon (Sesar et al. 2017), but it still
does not reproduce the line-of-sight velocities of the leading
tail. A previous model by Law & Majewski (2010) was able to
fit the velocities of the leading tidal tail, using a triaxial dark
halo model in which the disks rotate around the intermediate
axis. However, this Milky Way configuration is very unlikely
(Debattista et al. 2013). Refining the spatial distribution of the
Sgr dwarf tidal stream using the algorithm described in this
paper will help constrain N-body simulations of the Sgr dwarf
tidal disruption and lead to a better understanding of the shape
of the Milky Way’s dark matter halo.

The “bifurcated” stream can be seen clearly in the “Field of
Streams” as a lower surface brightness companion stream to the
Sgr dwarf tidal stream (Belokurov et al. 2006). Belokurov
identifies the Sgr dwarf tidal stream as Stream A, the
“bifurcated stream” as Stream B, and tentatively identifies a
more distant Stream C behind Stream A, which is now
generally associated with an extension of the Sgr trailing tidal
tail (Li et al. 2016a). Koposov et al. (2012) shows the
analogous bifurcated stream in the southern Galactic cap.
Although the origin of the second, lower surface brightness
stream close to the Sgr stream is not known, a leading
possibility is that it could arise from multiple wraps of the
stream around the Milky Way (Fellhauer et al. 2006). Since its
discovery, this stream has remained relatively unstudied
compared to its sibling. Newberg et al. (2007) derive distances
that are slightly farther away than Sgr for the bifurcated stream.
In contrast, Niederste-Ostholt et al. (2010) say that the
bifurcated stream is slightly closer to the Sun than the Sgr
dwarf tidal stream, and Ruhland et al. (2011) finds the distances
to be basically the same. Slater et al. (2013) show that the
southern bifurcated stream is closer to the Sun than the
southern portion of the Sgr dwarf tidal stream. Yanny et al.
(2009) show that the velocities and metallicities along the
bifurcated stream are similar to those in Sgr. In Koposov et al.
(2013), there is evidence presented that the two streams may
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both pass through the progenitor, but due to the proximity of
the progenitor to the Galactic bulge, it is difficult to see where
exactly the two cross in reference to the progenitor. In Newby
et al. (2013), it is suggested the streams may be from two
separate progenitors that accreted around the same time, but the
evidence to support this is not strong. Hernitschek et al. (2017)
give a possible fit to the bifurcated stream. Currently, the origin
of this stream is still an open question that our results will help
answer. Determining the origin of the “bifurcated” stream is
critically important, as it is useful for constraining the Milky
Way potential (Law & Majewski 2010; Vera-Ciro & Helmi
2013).

The Virgo Overdensity/Virgo Stellar Stream (Vivas et al.
2001; Duffau et al. 2006; Newberg et al. 2007; Juri¢ et al. 2008)
is a third large halo overdensity in the northern Galactic
hemisphere, at distances of 620 kpc from the Sun. It is unclear
whether this feature is a tidal stream, a “cloud,” or a combination
of several different pieces. Carlin et al. (2012) fit an orbit to the
puffy structure and suggest that this overdensity is the result of a
recently disrupted massive (10° M..) dwarf galaxy. Carlin et al.
(2012) also find that their orbit includes the Pisces Overdensity.
Li et al. (2016b) suggest Virgo could instead be associated with
the Hercules-Aquila Cloud and Eridanus-Phoenix overdensities,
given that they are on the same polar plane, have similar
galactocentric distances (18 kpc), and are separated by 120°. In
Bonaca et al. (2012), it is suggested that Virgo is “cloudlike’ and
may have been the result of a minor merger that passed close to
the Galactic center. Vivas et al. (2016) find several different,
presumably unrelated, substructures of RR Lyrae stars at
distances of 10-20 kpc in the Virgo region. They suggest that
there could be additional substructures at much larger distances.
The evidence for a more distant Virgo substructure is amplified
by Sesar et al. (2017), who find an outer Virgo overdensity at a
distance of 80 kpc from the Sun.

The Milky Way stellar halo has traditionally been described
by a smooth power-law distribution (e.g., Oort & Plaut 1975;
Preston et al. 1991). Since the discovery of significant
substructure in the stellar halo (Newberg et al. 2002), research-
ers have had to choose whether to include or exclude these
substructures when fitting the overall spheroid density. The
smooth density component of the halo includes smaller or more
thoroughly mixed remnants of tidal stripping, as well as any
stars that were created in the initial gravitational collapse of the
Milky Way galaxy. The algorithms used in this project will fit
the smooth component and streams simultaneously. Using
simultaneous fitting for the background (as we will refer to the
smooth component) and streams, instead of subtracting a
background to fit streams, we learn about the shape and density
of this smooth component of the stellar halo without requiring a
clean sky sample to fit it.

2. SDSS Turnoff Stars from Stripe 19

We will demonstrate this algorithm by fitting the density
substructure of blue MSTO stars in SDSS stripe 19. Halo
MSTO stars are more abundant than intrinsically brighter giant
stars in the halo, and can be observed to distances of 46 kpc in
SDSS photometric data. Previous studies have found that
MSTO stars bluer than the thick disk turnoff are present in the
Sgr dwarf tidal stream, the “bifurcated” stream, and the Virgo
Overdensity. Intrinsically fainter main sequence stars are not
observed at distances far enough to trace our target halo
substructures.
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Whereas stars like red giant stars or BHBs are often assumed
to have a known absolute magnitude based on their color or
spectral properties, MSTO stars of a given color and stellar
population are spread over a range of absolute magnitudes.
Instead of looking for a way to measure the absolute magnitude
for each of these tracer stars, Newberg et al. (2002) used the
average apparent magnitude of the stars in a particular
substructure, compared to the average absolute magnitude of
the MSTO population, to ascertain the substructure’s distance.
Cole et al. (2008) fit the density distribution of the Sgr dwarf
tidal stream under the assumption that the absolute magnitude
distribution of turnoff stars was Gaussian. Later, by studying
MSTO stars in Milky Way globular clusters, Newby et al.
(2011) not only fit a more accurate absolute magnitude
distribution, which incorporated observational effects from
SDSS and their selection efficiency, but also showed that the
absolute magnitude distribution was the same in a range of
globular clusters observed in the Milky Way halo.

We select our sample of turnoff stars from SDSS Data
Release 7 (DR7 Abazajian et al. 2009), with the criteria:
go>16, 0.1 < (g — 19 <03, (u—gp>04, and EDGE
and SATURATED flags not set (Newberg et al. 2002;
Newberg & Yanny 2006). Selecting stars fainter than g, = 16
removes any saturated stars not identified with the saturated
flag. The (g — r)o cut is used to pick out the blue side of the
turnoff of the halo main sequence, while avoiding the redder
thick disk turnoff stars. The (u# — g)g > 0.4 cut is used to
eliminate quasars. We use the subscript “0” to indicate that the
magnitudes we are using are reddening-corrected using the
Schlegel et al. (1998) dust maps. To minimize disk contamina-
tion, stars with b < 30° are also cut from the data (Cole
et al. 2008).

The footprint of SDSS stripe 19 is shown in Figure 1. There
are 84,046 turnoff stars (as selected by the cuts in the previous
paragraph) in the magnitude range 16 < gy < 22.5, from SDSS
stripe coordinates 135° < p < 230°, and —1925 < v < 1925.

In some stripes, there are globular clusters or other stellar
substructures, such as the Monoceros ring (Newberg
et al. 2002; Yanny et al. 2003) or the Galactic bulge, that are
not well fit by our parameterized density model. We avoid
these structures by removing the area of the sky in which they
are contained. We can remove a small area of the sky around
globular clusters, and then also remove a section of the sky
over which our model is integrated, as described in Section 3.6.
Low-latitude substructure can be removed by removing a larger
area of data near the Galactic center and anti-center where
necessary, thus making the stripe shorter.

An SDSS “wedge” includes a volume defined by the angular
limits of a stripe and the distance (from the Sun) to the most
distant object in the data set. Each SDSS stripe is 2°5 wide and
typically 140° long. Because the density varies only a small
amount in the narrow direction, we often depict the stellar
density in a polar plot with the radius proportional to the
distance and the angle given by p, the angular distance along
the stripe. We apply our algorithm to one wedge (stripe) of data
at a time.

3. Parameterized Milky Way Halo Model

In this section, we describe the density model that we will
fit to a single SDSS stripe. This model is adapted from
one originally used in Cole et al. (2008) and later used on
the distributed computing platform MilkyWay @home by
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Newby et al. (2013). As color errors increase, MSTO stars
are scattered outside the color selection bin and redder stars are
scattered into it. This effect is especially pronounced near the
survey detection limit where color errors are high. A major
change we made to the model is the inclusion of these effects
on our absolute magnitude distribution and completeness as
described in Newby et al. (2011). Although the color selection
range was chosen to be bluer than the turnoff of the Milky Way
thick disk, we have also added a thick disk component to the
smooth portion of the density profile, to take into account the
possibility that a few of these stars might have leaked into our
selection.

Throughout this section, we develop (for a single stripe) an
MLE that measures how well a model with a particular set of
parameters fits the data. This estimator is then used to optimize
the model parameters. Although we will fit three streams plus
the smooth component in this paper, the model as implemented
can fit an arbitrary number of tidal streams or substructures in a
given stripe. The code for this release of our model can be
found at Arsenault et al. (2018).

3.1. Smooth Component

We implemented two different models for the smooth
component of the halo, both with two tunable parameters. One
model is a Hernquist spheroid model (Hernquist 1990; Xu
et al. 2015) with a double exponential disk. The other is a
broken power law (BPL) (Akhter et al. 2012) without a disk. In
our model fitting, we will primarily use the Hernquist model in
order to be consistent with the previous versions of the model
described in Cole et al. (2008) and Newby et al. (2013). We
first describe the Hernquist/thick disk model, and then the BPL
model, which we used to study the effect of an imperfectly
modeled smooth component on the derived properties of the
halo substructure.

3.1.1. Hernquist Plus Double Exponential Disk

The Hernquist distribution (Hernquist 1990) is described by
the equation:

1

_ 1
r(r+ rg)®’ M

pspheroid (r) X

2
where r = /X2 4+ Y2 4+ %; note that this is not spherical

radius, but instead an ellipsoidal radius. In this equation, X, Y
and Z are Galactocentric Cartesian coordinates with the Sun at
(—38.5, 0, 0) kpc, Y in the direction of the Sun’s motion, and Z
in the direction of the north Galactic pole. Here, ry is a scale
radius and ¢ is a flattening parameter. Using this model, there
are two tunable parameters: ry and g. After inspecting the
Hernquist distribution (Hernquist 1990), the Einasto profile
(Retana-Montenegro et al. 2012), and a BPL distribution
(Akhter et al. 2012), we found that scale radius only has a
minor effect on the overall shape of the distribution over the
range of our data. In our model, we fix the scale radius at
12.0 kpc, which approximately reproduces the average of all of
the distributions inspected.

The double exponential thick disk used in our model is
described by the equation:

pdisk(RCyl’ Z) X eRcyl/]diskelzl/hdisk; (2)



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 238:17 (19pp), 2018 October

1.0

0.8 ’,

Thin Disk (z=135)
Thick Disk (u=135) ||
Hernquist (1 =135)
Thin Disk (1 =230)
Thick Disk (. =230)
Hernquist (1 =230) [{

o
o
P

Stellar Fraction

©
N

0.2 N

0.0 —=———

Heliocentric R (kpc)

Weiss et al.

1Oy
0.8 7
d
7/
7’
7’
7’
g \ v A
= 0.6 M K — Disk (¢ =135)
@ N — Hernquist (u=135)
firet \% .
s /I\\ - - Disk (1z=230)
T 04 N N - - Hernquist (1 =230) ||
G ' ’ A
AY
\
Y
AY
N
0.2
0.0 Tt
0 2 4 6 8 10

Heliocentric R (kpc)

Figure 2. Fraction of stars from the stellar halo, the thin disk and the thick disk as a function of heliocentric distance in the wedge. The first panel shows the Xu et al.
(2015) model and the panel on the right is our model after fitting stripe 19. The gray portion of the plot is outside our data and everything to the right of it is inside our
data selection area. The green lines represent the thin disk. While the thin disk is present in the Xu et al. (2015) model, it is not present in ours because it is negligible
(and not fit) in the wedge. The blue line is the Hernquist background, which should dominate in our data. The red line is the thick disk fraction. While the thick disk is
very present in the Xu et al. (2015) model, it is reduced in our model because most of the disk stars are eliminated with our color cuts.

where Reyi = VX2 + Y23 Ly is the disk scale radius; and hgig
is the disk scale height. In our model, we fix the scale length
and height of the disk to be the same as those found in Xu et al.
(2015): lgisc = 3500 pc and hgix = 700 pe. In Figure 2, we
show the relative expected fractional contributions of the thick
disk, thin disk, and Hernquist background in the Xu et al.
(2015) model at different positions in SDSS stripe 19. We do
not include the thin disk in our model because our data is far
enough from the Galactic plane to avoid the majority of the
stars in this component, and our color cuts also help eliminate
disk contamination.

Because we are using blue MSTO stars that preferentially
avoid the thick disk, we cannot use a published normalization
for the disk and halo, so this normalization is a fit parameter.
We write the overall density of the combined stellar spheroid
and disk as:

psmooth (X, Y, Z) = fspheroid * pspheroid (r)
+ (1 — €pheroid) *  Pppick disk Reyls £),
3)

where €gpneroia 1 @ weighting factor that allows us to fit any mix
of densities between all disk (€spheroia = 0) and all spheroid
(€spheroia = 1). The following equation can be used to convert
€spheroid 10 faisk(X, Y, Z), the fraction of thick disk stars at a
given point:

(1 - 5spheroid) * Pthick disk(RCyl’ Z)

)
psmoolh(X’ Y’ Z)

.ﬁiisk(Xs Ys Z) =

To find the fraction of stars in the spheroid at a point, fpheroid
X, Y, Z), use:

fspheroid X, Y,2)=1 _fdisk(X’ Y, 7). )

The two parameters that we fit in the smooth Hernquist/double
exponential model are g and €gpheroia-

3.1.2. BPL Model

The BPL distribution from Akhter et al. (2012) is described
by the following equation:

ppL(r) o< (r/ro)", (6)

where

—2.78 if 45k
" { ifr < pc )

—5.0if r > 45kpc ’

ro = 8.5 kpc is the distance from the Galactic center to the Sun,

andr = X2+ Y%+ j—z.Weuse

J— {qo + (1 = gp)(Reyi /R if Reyi < R,

1.0 if Ryt > R, : ®

where go = 0.5, Reyi = VX* + Y2, and R, =20kpc, as
written in Keller et al. (2008).

We do not use this model for fitting the halo because the
Hernquist model is more comparable to previous work. Instead,
we use this model for testing our algorithm.

3.2. Stream

In each stripe, which probes a wedge-shaped volume of the
Galaxy, the density of a tidal stream or cloud is fit to a cylinder
with a uniform density along its length, and Gaussian fall-off in
density as a function of radius. The orientation of the stream
through the wedge is described by a unit vector @ with a polar
angle from the Z-axis of #, and an azimuthal angle of ¢
measured from the Galactocentric X-axis and increasing in the
direction of the Galactocentric Y-axis. The position of the
cylinder’s axis, at the point that it passes through the center of
the stripe (v = 0), is given by an angular coordinate along the
stripe, p, and a distance from the Sun, R. The (u, v) coordinates
are SDSS great circle coordinates York et al. (2000), which are
defined separately for each stripe.
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At point p relative to the cylinder, the stream’s density p is
described by the function:

2

—d?
Pstream (p) x €22, )

where d is the radial distance from the stream, and o is the
standard deviation describing the stream’s width (Cole et al.
2008).

The final parameter in the stream model is the stream weight,
€, which measures the fraction of stars in the wedge that belong
to a stream. To get the fraction of stars in a stream or smooth
component (spheroid) from the weights, we use the following
functions:

i

e
1 + Zl;zl[esi]

1
Sopheroid = ————— (10)
spherot 1 N ZI;:I[eg/]

f;tream; =

Here, i and j denote the stream number for a total of k streams.
The weight of a stream is used for model optimization instead
of the total star counts because it is a continuous real number
that is defined for all real numbers, making it a better parameter
than star counts, which are discrete numbers (Cole et al. 2008).

In total, six parameters are required to fit a single stream: the
four spatial coordinates, 6, ¢, u, and R, which give the stream
position and orientation; the width parameter, o; and the stream
weight, . The model can handle an arbitrary number of
streams in a single wedge.

3.3. Absolute Magnitudes of MSTO Stars

In our implementation of statistical photometric parallax
(Newberg 2013), we use the absolute magnitude distribution
for MSTO stars described in Newby et al. (2011), which
accounts for the distribution change due to contamination from
redder stars at faint magnitudes. In this implementation of
statistical photometric parallax, we convolve the model density
distributions (in the R direction, which corresponds to our line
of sight) with the absolute magnitude distribution. The
convolution is given by:

on (17 b7 R(g(])) =

P comp

1 0
ot A
0 —00

* Peomp(ls b, R(gy — &) - N(gy — & &> wdg,  (11)

where R(g,) is distance to a star (or position in apparent
magnitude space) with an apparent magnitude of g, and
assumed absolute magnitude of M = 4.2, peomp is a density
model, either background or stream, [ and b are Galactic / and
b, and N (g, — g; &> u) is our MSTO star absolute magnitude
distribution. This integral is the combination of the MSTO star
absolute magnitude distribution function with our stellar
density function over all magnitude space. For an in-depth
explanation of this integral, see the original derivation in Cole
et al. (2008).

In our model, we use the MSTO absolute magnitude
distribution found in Newby et al. (2011), which is defined
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Figure 3. Detection and selection efficiency as a function of magnitude. The
blue line shows the detection efficiency for the SDSS as fit by Newberg et al.
(2002), the green line shows the detection efficiency correction to account for
stars leaking in and out of the color selection bin (Newby et al. 2011), and the
red line shows the overall combined detection efficiency for MSTO stars in the
SDSS survey. The inclusion of the selection efficiency drastically changes
the completeness for MSTO stars around 20th magnitude and dimmer.

by two half-Gaussian distributions that are normalized together:

1 2
N(x; gy, u) = Wmuz, (12)
where
op=.36ifx <0
"= (Rig) = a +yifx>0 (13

[ + e Re)—D

a =0.52, 3 =12.0, and v = 0.76. This absolute magnitude
distribution accounts for an increase in the standard deviation
on the faint side of the absolute magnitude distribution as a
function of magnitude in the SDSS. The change in distribution
is due to the change in the type of stars found in our narrow
MSTO color selection criteria as increasing color errors toward
the magnitude limit of the survey. Toward the survey
magnitude limit, color errors increase and cause redder, lower
main sequence stars to leak into our color selection as actual
MSTO stars leak out. The underlying absolute magnitude
distributions of all turnoff stars in the halo is assumed to be
constant as found by Newby et al. (2011).

3.4. Detection and Selection Efficiency

To correct for the drop-off in detection efficiency near the
magnitude limit of the SDSS, a sigmoid curve was fit in Cole
(2009) to data from Newberg et al. (2002):
%
e51(8—52) + 1’

where (so, 51, $2) = (0.9402, 1.6171, 23.5877). This curve
describes the survey completeness at a given magnitude. Using
this curve, we can account for the decreasing completeness of
the survey with increasing magnitude.

As the color errors increase, fainter main sequence stars leak
into the MSTO color selection box, and MSTO stars leak out of

gsigmoid(go) = (14)
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the MSTO color selection box. The detection efficiency is
adjusted using what we call the selection efficiency to account
for the number of stars expected given this effect. The selection
efficiency for SDSS stars in the MSTO selection bin is given by
a seventh-order polynomial fit by Newby et al. (2011). We
reproduce it here because there was an inadvertent truncation of
significant digits in the original paper that affects the result of
the fit:

7
BRG) _ 5, + 0y,

no i=0

gselction(R(go)) = (15)

where a, = (1.05628761, —3.14555041 x 1072, 2.05499665 x
107, 2.53747387 x 107°, —2.67000303 x 10°°, 0, 0, 0)
and represents the remaining MSTO stars in the color select-
jon bin, and a, = (1.60879353 x 1072, —1.97164570 x 102,
—4.31844102 x 10™%, 6.60960070 x 10, 1.26368065 x 10>,
—1.91560491 x 1077, 147140445 x 107°, —4.53857248 x
10~'?) and represents the red stars that leak into the color selection
bin to contaminate the sample. The percentage of stars left in the
selection bin, assuming 100% detection efficiency, is illustrated in

PDF(l, b, R(gy)1Q)

con
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where n is the number of streams in the model and
5(R(g0)) = gsigmoid(R(go)) : gseleclion(R(gO))' To avoid pro-
blems with numerical underflow due to small probabilities,
we instead maximize the log likelihood:

N
%ln(c(Q» - %Zln(PDF(li, bi. 410). (18)

i=1

3.6. Removing SDSS Artifacts and Globular Clusters

In the SDSS, there are areas of the sky with either missing or
unusable data, such as the regions hidden behind a saturated bright
star. There are also other sections of the sky with known structures
that are not included in our model, such as globular clusters. We
remove regions with these substructures or artifacts from our data
and then integrate over the remaining usable survey volume.

The technical details of this process are as follows. We
change our PDF to remove the integral of the density over the
volume we are cutting from the denominator of that density’s
respective fraction:

1 E(R(80)) Phackgrouna (I b> R(g9)1Q)

P4 200 € [ &R o grna s b REDIDAY = [ ERE) P grunals b R D)V

n efi

E(R(8)) Pljpeam, (I b, R(80)1Q)

+ 2

i =1

Figure 3. The two detection efficiency functions are multiplied
together to get the total detection efficiency for stars that fit the
MSTO selection criteria.

3.5. Maximum Likelihood Estimator

Putting together all of the individual model components, we
create an MLE that tells us how well our model, with
parameters Q, fits a set of data (/V stars with measured [;, b;, g;):

(16)

N
L(Q) =[] PDE(, bi, R(g)1Q),
i=1

where i is the index of each star, and / and b are Galactic
coordinates (Cole et al. 2008). Substituting in our density
functions, correcting for imperfect knowledge of the absolute
magnitudes of the stars, and taking into account the detection
efficiency, our PDF is given by:

PDF(, b, R(g))|Q)
B 1 S(R(g()))pgglclkground(l’ b. R(8)IQ)
S+ Z:Z:IEH fg(R(gO))pEzgkground(l’ b, R(g)|Q)av
- ER(g) P, (1. b, R(5)10)
L4300 e [ R (4 b, Rig) QY
(17)

n

up>

i =1

L4325 = 1€ [ ER@ A 1 b REIIDAV — [ ER(80) 5t b, R(EG)IDAVerr

19)

where dV,,, represents integrating over the volume that was cut
out of the data and the rest is the same as Equation (17).

In our data, we will either remove the stars from the globular
cluster from the data set, or we will not have data in this region
due to deblending limitations in the SDSS survey.

3.7. Covariances and Degeneracies

There are several degeneracies and covariances we must
account for in our parametric model. The parameters that are
explicitly covariant are the relative weights between the density of
the streams and background. There are many other covariances
that can be read from the error matrix, in Table 1. Matrix elements
with a high value have high covariance in the corresponding
parameters (Ivezi€ et al. 2014). When comparing two parameters,
the sign of the covariance tells you the orientation of the error
ellipse. A positive covariance indicates they are positively
correlated and a negative covariance indicates they are inversely
correlated. An example of parameters with a high covariance is
the angular position along the stripe, i, and the distance from the
Sun, R, for the streams.

The degeneracy in stream orientation and stream selection
are inherent to an optimization problem with a model of this
type. The stream orientation degeneracy comes about due to the
cyclic nature of angles and can be mitigated by constraining the
optimization to a single hemisphere. The stream selection
degeneracy arises from the freedom to fit each stream to any
location in the wedge. Therefore, one optimization may find



Table 1
The Full Variance Matrix for the Optimization Run on the SDSS Stripe 19 Data

Error Matrix for SDSS Stripe 19

Background Sagittarius “Bifurcated” Stream Virgo
Esph q € 1 R 0 1) o € 1 R 0 o) o € s R 0 9] o
(deg) (kpe) (rad) (rad) (kpe) (deg) (kpe) (rad) (rad) (kpe) (deg) (kpe) (rad) (rad) (kpe)
Esph 2.3e-7
q —8.2e-6 4.8¢—4 .
€ 8.6e-6 —7.2e-4 0.0077
I 4.0e-5 —1.0e-3 0.0065 0.17 -
R —3.2e-6 6.5e—4 —0.0031 0.029 0.11
0 —1.3e-5 6.2e—4 —0.0024 —0.008 0.0042 0.013 e
) 1.6e-5 —7.8e4 0.0017 0.018 —0.0049 —-0.014 0.037
o 2.6e-6 —3.3e-5 0.0049 —0.0038 0.0032 —0.0045 —0.02 0.035 .
€ 1.2e-5 —0.0013 0.0039 0.0044 —0.0062 —6.0e—4 7.1e4 1.9¢e4 0.012 e
n —6.9e—4 0.019 0.003 —-0.25 -0.29 0.14 —0.13 —0.084 0.015 130
R 8.4e—4 —0.033 0.024 0.29 0.38 —0.14 0.14 0.079 0.12 —110 110
0 —1.6e-5 0.001 —0.003 —0.0071 —0.0015 0.0019 —0.0018 —0.0015 —0.0096 0.64 —0.82 0.017
) 6.4e-6 —2.4e-4 4.9e—4 —0.001 0.0038 —0.0011 0.0011 8.9e—4 —0.002 —-0.72 0.52 —6.4e—4 0.0079 e
o 9.7e-5 —0.0095 —0.022 0.21 0.1 0.027 —0.028 —0.037 0.11 -59 11 —0.18 —0.038 6.6
€ —1.3e-6 —6.6e—4 4.1e—4 —0.0089 3.5e4 1.2¢e-4 8.8¢—4 —0.0022 0.0013 0.16 —0.15 0.0026 6.2¢4 —0.012 0.0072
n —9.0e—4 —0.058 0.48 —0.1 —0.38 —0.067 0.25 —0.11 0.59 73 —69 0.27 —0.26 —4.1 0.81 280
R 3.7e4 —0.0068 —0.037 0.0096 —0.025 —-0.014 —-0.012 0.025 —0.054 -9.6 9.5 —0.048 0.035 0.71 —0.09 -36 54 .
0 7.3e-6 —4.4e-4 —2.6e—4 —0.0033 —0.0023 —5.2¢e4 5.7e4 —3.8e4 3.0e-4 —0.039 0.063 —3.3e4 1.0e—4 0.0053 7.7e—4 —-0.19 0.05 0.0013
o) 4.9¢-6 —4.4e-4 0.0019 —9.3e-5 —0.0035 —6.3¢4 5.7e4 4.6e—4 0.0022 0.19 —0.15 —3.1e-4 —5.6e-4 0.011 0.0013 0.71 —0.073 —l.le—4 0.0032
o —3.3e-5 0.0012 -0.014 —0.024 0.014 0.0021 0.0038 -0.013 —0.016 0.26 —0.44 0.02 0.0028 —0.1 0.014 0.53 —0.12 0.0012 —0.0043 0.087

Note. The bold diagonal elements correspond to the reported errors (o for each parameter). The off diagonal elements represent the covariances for each of the parameters. We only provide the lower half of this matrix
because it is symmetric. To improve legibility, we have provided boxes that group the parameters by their corresponding streams. Although most covariances are small, for some pairs of parameters the covariances are of
the order of the error.
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stream 1 to best fit Sagittarius, while another optimization on
the same data may find stream 2 to best fit Sagittarius with the
same parameters. In this instance, we do not try to eliminate
this degeneracy because it does not change the result in any
substantive way, and attempting to force a particular stream
order would require us to artificially constrain streams to
mutually exclusive regions and could bias our optimization.

4. Optimization and MilkyWay @home

MilkyWay@home is a distributed computing platform. Volun-
teers from around the world donate their unused CPU and GPU
cycles to run “workunits” in which the likelihood is evaluated for a
particular set of parameters that we choose. The MilkyWay @home
server, running the Berkeley Open Infrastructure for Network
Computing (BOINC; Anderson et al. 2005) sends each volunteer
an executable that will calculate the likelihood, a set of model
parameters to try, and one stripe of Milky Way stars, selected as in
Section 2. The users return the likelihood. Given the newly
calculated likelihood and the previously returned likelihoods, the
MilkyWay@home server uses a differential evolution algorithm to
determine the best parameters to send out in new workunits.

The differential evolution optimization algorithm used by
MilkyWay@home is part of the Toolkit for Asynchronous
Optimization (TAO) written by Travis Desell (Desell et al.
2007). This algorithm is a modified version of differential
evolution for use in highly asynchronous environments, such as
a distributed computing platform that has heterogeneous,
distributed, fault-prone hardware.

This version of the differential evolution algorithm begins by
uniformly sampling across the parameter space within the
allowed search area (as determined by the constraints on each
parameter). As these random sets have their likelihoods
computed, it inserts them into a population. In this context, a
member of a population is a complete set of model parameters
(in this case, 20 parameters). Once there are enough returned
results to fill the population (for example, we typically use a
population size of 200, which is 10 times the number of
parameters being fit), newly returned likelihoods will then
determine whether a member of the existing population should
be replaced with the new parameter set.

At this point, the algorithm begins trying to replace individuals
within its population. To generate new parameter sets to test
against the individual, the algorithm uses the following method:
(1) A “parent” is selected from the population using one of
several methods. (2) A pair of population members are randomly
selected, and the differential vector between them is calculated.
Multiple pairs can be used and their differentials averaged.
(3) This differential vector is scaled by a fixed differential scaling
factor before adding it to the parent’s parameters to identify a
new position in parameter space. Finally, (4) the individual
potentially being replaced (which generally is different from the
parent, and is selected by looping over the current population
members) is combined in some way with the parameters of the
newly determined position in parameter space. This crossing can
be done using one of several strategies, such as assigning a
random chance of taking a parameter value from the new
parameter set over taking a parameter value from the individual
we are testing for replacement. After this crossover, the generated
set of parameters obtained is sent out as a workunit.

To accommodate the asynchronous nature of MilkyWay @-
home, TAO blurs the lines between generations of populations
in this algorithm, allowing for new parameter sets to be
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calculated even while waiting for results to be returned (Desell
et al. 2007). As results come in, the newly computed likelihood
is compared with the likelihood of the population member
currently residing at the ID of the individual it was attempting
to replace, and the parameter set with the better likelihood is
kept. Because the lines between generations are blurred, it is
possible to generate multiple test parameter sets per population
member, so by the time a likelihood calculation is returned, the
likelihood might be compared to that of one of the children or
grandchildren of the population member from which the test
parameters were originally generated.

We use a set of options that we have found consistently
produce convergence within a reasonable time. With these
options, the algorithm is: (1) Parents are selected at random from
the current population, which has 200 members. (2) A single pair
of population members is used to calculate the differential
vector. (3) The parameter value differences are multiplied by 0.8,
and then added to the parent parameters. (4) This point in
parameter space is then combined with the parameters in the
individual being tested, using binary recombination, a crossover
rate of 0.9, and a parent scaling factor of 1.0.

These parameters allow the optimizers a large number of
possible guesses to reduce the chance the optimizer will stall
out or get stuck in a local minimum. Typically, it takes between
two and three million returned likelihood calculations to
complete a single optimization of our parameters. We often run
four optimizations of a single data set to ensure agreement
between the runs and help determine convergence.

We know a run is out of energy and converged when the
change in likelihood between updates of the algorithm become
small for a long period of time and the results from the
independent runs on the same data agree. When the likelihood
no longer changes in the sixth decimal place for 100,000
returned results and the independent runs agree in the sixth
decimal place, we assume the run is converged. We have found
that, once the optimizer is making improvements on this scale,
the change in the parameter values for a given improvement in
likelihood is much smaller than the associated error in the
parameter.

Some of the major challenges of using a volunteer
distributed computing network like MilkyWay @home include:
its massively asynchronous nature, its potential for faulty
results, and the need to support multiple software and hardware
configurations. The project’s asynchronous nature arises from
the discrepancy between compute times for CPU and GPU
platforms, and the episodic availability of each processor.
A CPU typically takes around 30 minutes to complete a
single likelihood calculation, while a GPU can take as little as
15 seconds to complete the same calculation. To protect our
results from potential faulty likelihood calculations, we
perform adaptive cross validation on our returned likelihoods.
When we receive a result, it might have to be recomputed by up
to four more users, depending on the results of previous users.
For trusted users who compute a likelihood that does not
change the population, we validate a minimum of 10% of their
workunits. The percentage validated changes based on the
percentage success of their previous 10 workunits. Results that
will be integrated into the optimizer’s population must be
cross-validated by another volunteer, who must agree on the
computed likelihood for this parameter set. If these volunteers
do not agree, the work unit is sent out to additional volunteers
until two volunteers agree on an answer. If five attempts to
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Table 2.
Constraints and Preliminary Results From MilkyWay@home Fits for SDSS Stripe 19
Preliminary Stripe 19 Results from MilkyWay @home
Background Esph q
Newby et al. (2013) 0.52 £ 0.12
Fit 0.9969 + 0.0005 0.57 + 0.02
Constraint 0.8-1.0 0.25-1.0
Stream € 1 (deg) R (kpc) 0 (rad) ¢ (rad) o (kpec)
Sagittarius —1.94 £+ 0.09 151.7 £ 0.4 21.1 £ 0.3 2.57 £ 0.1 278 £ 0.2 1.0 £ 0.2
Sagittarius Constraint —3.51t0 0.5 135-172 13.88-32.12 1.77-3.03 2.37-3.63 0.1-5.0
Sagittarius (Belokurov et al. 2006) 152.0 20 + 2
Sagittarius (Hernitschek et al. 2017) 168.3 25.7 5.0
Sagittarius (Newby et al. 2013) -1.9 151.0 23.0 2.4 3.0 0.9
“Bifurcated” Stream —0.98 £ 0.11 163 £ 11 48 + 10 1.36 £+ 0.13 341 £ 0.09 17.6 + 2.6
“Bifurcated” Stream Constraint —2.95 to 1.95 153-205 22.88-50.0 0.00-3.14 2.37-3.63 2.0-25.0
“Bifurcated” Stream (Belokurov et al. 2006) 175.8 27 + 1
“Bifurcated” Stream (Hernitschek et al. 2017) 173 17 10.1
“Bifurcated” Stream (Newberg et al. 2007) 179 32
Virgo —0.39 £ 0.08 206.9 + 16 6+23 0.50 + 0.04 3.0 £ 0.06 6.1 £0.3
Virgo Constraint —3.0to 3.0 135-230 6.0-26.24 0.00-3.14 0.00-3.14 0.5-11.0

Note. Our results for Sagittarius are compared with the results found in Belokurov et al. (2006), Newby et al. (2013) and in Hernitschek et al. (2017). The slight
distance and position discrepancy in the result from Hernitschek et al. (2017) could be due to the measurement being taken 175 outside of the plane of stripe 19. We
find a much farther distance to the “bifurcated” stream than was found in Newberg et al. (2007), Belokurov et al. (2006), or Hernitschek et al. (2017). The distance
discrepancy in Newberg et al. (2007) can be explained by the fact that they did not consider completeness or the effect of larger color errors near the limit of the

survey.

compute the likelihood do not result in two answers that agree,
the parameter set is abandoned.

5. Calculating Uncertainties

We calculate parameter uncertainties using the method
outlined in Ivezi¢ et al. (2014) for calculating uncertainties
for MLEs. The uncertainty is related to the Fisher information
matrix, which can be calculated as the negative of the Hessian
matrix of the log likelihood. The equation for this matrix is:

d*1n(L)

Hj = —
6,49,

[6=0,» (20)

where Hj; is the Fischer information matrix. The variance
matrix, V, is the inverse of the normalized Fischer information

matrix:
21

where N is the number of stars. Then the standard deviation for
each parameter is calculated by taking the square root of the
diagonal elements of the variance matrix. As mentioned in
Ivezi¢ et al. (2014), these are the lower bounds on the
uncertainties. When we do this calculation, we use a central
finite difference around the best parameter set given by our
optimizations; tests have shown that the second partial
derivatives are not sensitive to the (small) stepsize.

6. Preliminary Results for SDSS Stripe 19

We fit all of the turnoff stars in stripe 19, as described in
Section 2, with a Hernquist plus double exponential disk and
three streams. We choose three streams because we expect to
find Sgr, the “bifurcated” stream, and Virgo in our data.
However, if one of these streams is absent, the algorithm has
the liberty to marginalize extra streams. Although we plan to

10

try fitting the data to a larger number of streams in the future, it
was not attempted here due to the long processing time
required to reach optimization convergence, and because the
potential need to fit additional streams was not understood
before completion of this work. The parameters for the model
were determined by running four full optimizations to
convergence on the SDSS data, which took approximately
three weeks. The optimization with the best likelihood was
selected, but the parameters and likelihoods from all four runs
were similar.

The parameters found are listed in Table 2 along with their
errors, calculated using the method described in Section 5. We
also provide other comparisons for our results in Table 2 for
reference. Note that we have not used any data from
neighboring stripes in creating the parameters for stripe 19;
when we do the final optimizations on this data, we might find
it necessary to use constraints from neighboring stripes to
ensure convergence to the best possible set of parameters and to
enforce the physical constraint that streams must be continuous
from stripe to stripe (as in Newby et al. 2013), but that has not
been attempted here.

A more user-friendly version of our results can be found in
Table 3. The parameters given in Table 3 can be used to
calculate the MSTO stellar density of the background or a
stream at any point in the wedge. The density of the smooth
component, in MSTO stars per cubic kpc, is given by:

pbackground =A x Psmooth (X’ Y, Z)’ (22)
where psmoot(X, Y, Z) is from Equation (3) and A is provided
in Table 3. The density of a stream, in MSTO stars per cubic
kpc, is:

2 2
_ —r*/2c
pstream = Ae 4

(23)

where A and ¢ are provided in Table 3, and r is the distance
from the axis of the cylinder that describes the stream. To
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Figure 4. MSTO star stellar density in stars per cubic kpc in a 1 kpc by 1 kpc by 2°5 pixel at each point in a flattened, face-on view of SDSS stripe 19 after they were
fit by MilkyWay @home. The first four panels in the top row show a probabilistic separation of the SDSS stars into each different substructure fit, and the last panel
includes all of the stars in the original stripe of data before separation. In each plot, we show a smoothly separated background, and three separate streams with
seemingly no substructure left over in the wedge. The lower row shows the density distribution of stars in a simulated stripe that was created with the same parameters
that were fit to the actual data. Note the similarity between the simulation with three streams and a smooth background to the actual SDSS data.

Table 3
User-friendly Description of the Density of MSTO Stars in the Background and Streams

Stripe 19
Background Stars A q r, (kpc) Esph
Background 38271 245099266 0.57 12.0 0.9969
Stream Stars [ (deg) b (deg) r (kpc) A o (kpe) a
Sagittarius 5500 215.5 49.2 21.1 11434 1.00 (—0.51, 0.19, —0.84)
“Bifurcated” Stream 14363 218.6 60.8 48.2 58.4 17.6 (—0.94, —0.26, 0.21)
“Virgo” 25911 12.4 74.4 6.05 360.9 6.12 (—0.48, 0.06, 0.88)

Note. Values taken from the preliminary results in Table 2. This table includes the number of stars in the wedge, converted from the weights; the stream center’s
galactic /, b, and r, converted from (i, v and r; the stream’s Gaussian normalization factor A and width o; and the stream’s unit direction in galactic (X, Y, Z ). With the
numbers provided in this table, it is possible to find the background and stream MSTO star densities at any point in the wedge using Equations (22) and (23).

calculate r from the values in Table 3, use

r=10r—ro xil, (24)

where r is the position at which you want the density and r is
the position of the stream center. A conversion factor is
required to convert from MSTO stellar density to the stellar
density of other tracers based on the ratio of expected tracers to
MSTO stars.

In Figure 4, we show a wedge plot of the density of SDSS
turnoff stars in stripe 19 (right panel), and the separated
components (left four panels). To separate the stripe into its
components, we use a probabilistic separation method. In this
separation method, we assume that each star in the stripe must
belong to one of the four components we fit: the background or
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one of the three streams. Then, using the parts of the PDF from
Equation (17) that correspond to each component, we can
calculate the relative probabilities that a star belongs in each of
the components. The star is then randomly assigned to a
component according to the relative probabilities. Because this
is a probabilistic separation, the specific stars we select for each
component do not necessarily belong to the component in
which they are placed. The densities of the separated stars,
however, follow the density of the components. For more
information on this method, see Cole et al. (2008) for the
original derivation and Newby et al. (2013) for the derivation
for multiple streams.

In this figure, you can see that the three separated streams
plausibly resemble Gaussian cylinders with a slight elongation
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Figure 5. The residual between the stellar density of SDSS stars in stripe 19
and a simulation created with the fit parameters from MilkyWay @home. The
color represents the residual density of MSTO stars per cubic kpc in a 1 kpc by
1 kpc by 275 pixel in the flattened (all stars are added together in the
v direction, so the volume of the stripe increases with radius from the Sun),
face-on stripe. This residual is found by subtracting the “Simulation After Fit”
data from the SDSS data from Figure 4. The residual shows that the model fits
the data well, though there remains some structure in the highest-density
portion of the residual.

in the radial direction due to the absolute magnitude
distribution, and a slight elongation due to the stream’s
direction of travel through the wedge; this latter elongation is
not generally in the radial direction. However, the “bifurcated”
stream is less comprehensible because it is very wide and
covers the whole stripe. The separated “bifurcated” stream does
not look like it contains any extra substructure, which would
appear as substructure in the density of stars on the third panel
of Figure 4. The background also looks smooth, and exhibits
no apparent unidentified substructure. As we will see, the
smooth component looks very similar to the smooth component
in a simulated stripe. Figure 2 compares the Xu et al. (2015)
model smooth component model to our model with the
parameters fit for stripe 19. We see that our model finds a
lower fraction of thick disk stars in the wedge, which is
expected because we designed our color cuts to eliminate most
of the disk stars.

To visualize the fit of the expected density distribution in this
wedge, given the model and the fit parameters, we used the fit
parameters to simulate each component in the SDSS wedge
individually, and then combined them to get a full picture of
the stripe. The results are shown in the second row of Figure 4.
The model appears to accurately fit the density of the separated
components in the SDSS stripe. To get a better idea of how
well it fits the SDSS data, we show a residual of the original
SDSS stellar density minus the simulated density in Figure 5.
We see only minor discrepancies in areas of particularly high
density.

7. Validation of the Results Using Test Data
7.1. Generating Simulated Turnoff Stars in SDSS Stripe 19

To test that both the model and fitting algorithm work as
intended, the algorithm was tested on a set of data drawn from a
density model with known parameters. We wrote a completely
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separate program to generate the test data, so that the entire
modeling and fitting procedure would be tested. Generating the
test data is a multistep process in which we simulate our
background stellar distribution and streams with the correct
number of stars, determine the star’s absolute and apparent
magnitudes using our magnitude distribution, and then apply
the effects of observational bias.

The first step in generating our test data is selecting the set of
parameters we wish to simulate. To do this, we use the values
of the parameters from our fit to SDSS stripe 19 from Table 2.
This is the best set of parameters to check the accuracy of the
derived stripe 19 density model.

After we choose the parameters, we input them to our wedge
simulator, which begins by calculating the number of stars in
each component of our data. The program does this using
Equation (10) with the specified weights to get the fraction of
stars in each component. The fraction of stars is then multiplied
by the number of MSTO stars we want to simulate (in this case,
84,046, which is the number of turnoff stars observed in stripe
19). Each component is then simulated with the required
number of stars.

For each component of the density, the test data generator
creates one star at a time until the number required by the
weights is reached. The smooth component is generated using
rejection sampling. We uniformly sample Equation (3) over the
volume of the wedge, and we compare the density from
Equation (3) to the maximum density possible in the wedge
from Equation (3). Then, using a random number, we
determine whether we will reject or keep the star, based on
the fraction of the calculated density to the maximum density.

Stream stars are generated using active generation to create a
stellar position in three dimensions. One number drawn from a
uniform distribution determines the position along the
cylinder’s z-axis, and two numbers drawn from a normal
distribution determine the position of the star in the plane
perpendicular to the cylinder’s z-axis. The length of the
cylindrical distribution that is generated is significantly longer
than the portion of the cylinder axis that is within the wedge of
data in stripe 19. The cylinder’s length is long enough that all
of the volume in the wedge that is within three o of the
cylinder’s z-axis will be populated. The stream star is then
rotated and translated into Galactic X, Y, Z based on the
stream’s orientation and center point.

As the program generates each star, it applies the observa-
tional biases that are corrected for in our maximum likelihood
model. First, it determines the star’s absolute magnitude based
on the absolute magnitude distribution in Equation (13) and then
uses that to determine its apparent magnitude. At this point, it
checks to make sure the star lies within the wedge. Finally, it
samples the combined magnitude limit from Equation (14) and
the color selection efficiency from Equation (15) to determine if
the star would have been observed.

7.2. Results from Fitting Test Data

We generated two different sets of test data: one with a
Hernquist background that exactly matches the model to
which the data is fit, and one with a BPL background. The
second simulation tests the sensitivity of our measurements
of the stream parameters to imperfect knowledge of the
smooth component of the Milky Way spheroid. For the BPL
background, we used the parameters fit in Akhter et al. (2012):
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Table 4
Results and Constraints for Simulated Data Wedges with Hernquist (Fit) and BPL Backgrounds
Simulated and Fit Values from MilkyWay @home
Background Ngars Esph q
Simulated Value 38,270 0.997 0.565
Fit 37,752 + 1586 0.997 4+ 0.0004 0.54 £+ .02
BPL 29,431 + 853 1.0 &+ 0.0003 0.58 £+ .02
Constraint ‘e 0.8-1.0 0.25-1.0
Stream Nitars € 1 (deg) R (kpc) 0 (rad) ¢ (rad) o (kpec)
Sagittarius (Sim Value) 5500 —1.94 151.7 21.1 2.57 2.78 1.0
Sagittarius (Fit) 5877 + 759 —1.86 + 0.08 152.0 + 04 20.7 £ 0.3 243 £ 0.10 2.80 + 0.14 1.2 +0.2
Sagittarius (BPL) 8776 + 711 —1.21 £ 0.07 151.7 + 0.4 215+ 0.3 247 + 0.10 243 +£0.22 1.9 +04
Sagittarius Constraint —3.51t0 0.5 135-172 13.88-32.12 1.77-3.03 2.37-3.63 0.1-5.0
“Bifurcated” Stream (Sim Value) 14,363 —0.98 163.2 48.2 1.36 341 17.6
“Bifurcated” Stream (Fit) 18,193 + 1641 —0.73 £ 0.1 180.0 £ 5 36 £3 1.31 £ 0.12 3.27 £ 0.10 16.1 £ 2.1
“Bifurcated” Stream (BPL) 18,395 + 1154 —0.47 £ 0.07 204.6 + 13 32 +0.8 1.31 +£ 0.06 3.63 £0.22 15.6 + 1.8
“Bifurcated” Stream Constraint —2.951t0 1.95 153-205 22.88-50.0 0.00-3.14 2.37-3.63 2.0-25.0
Virgo (Sim Value) 25911 —0.39 206.9 6.05 0.50 3.01 6.12
Virgo (Fit) 22,221 + 1641 —0.53 + 0.08 2149 +9 6.1 + 0.7 0.51 £ 0.03 3.13 £ 0.04 55+03
Virgo (BPL) 27,441 + 1295 —0.07 £ 0.06 194.1 + 4 6+ 1 0.42 + 0.02 3.11 £ 0.03 49 +0.2
Virgo Constraint —3.0to0 3.0 135-230 6.0-26.24 0.00-3.14 0.00-3.14 0.5-11.0

Note. Here, we can see that most of the simulated parameters lie within our 1o errors from our fits, when the simulated density has the same form as the model to
which it is fit. The parameter values for the BPL fits are generally similar to the simulated values, except some of the uncertainties seem to be underestimated using our

uncertainty estimation method.

an inner halo exponent of —2.78, outer halo exponent of —5.0,
and break radius of 45 kpc.

MilkyWay @home was used to find the optimum values of
the parameters, fit separately for the two sets of generated test
data. We ran four optimizations for each of the simulated data
wedges, each with minimal constraints. Each set of four
optimizations independently converged to the same results;
these results are listed in Table 4.

Next, we determined the uncertainty in each parameter,
using the method outlined in Section 5. Because our errors are
given as one standard deviation, we can expect 68% (13-14
parameters) of the results to be within uncertainty, 95%
(19 parameters) to be within two times the uncertainty, and the
rest to be within three times the uncertainty, most of the time.
Our results in Table 4 show that, for the Hernquist plus disk
background simulation, we had 10 parameters within the
uncertainties, 16 within two times the uncertainties, and 18
were within three times the uncertainties. While it is unusual
that two of the parameters are more than three times the
uncertainty from their simulated value, we do not believe this is
enough to cause alarm.

In our results for the simulation with the BPL model, we find
that five parameters are within the uncertainties, eightare
within two times the uncertainties, and nine are within three
times the uncertainties. The higher frequency of best-fit
parameters with large offsets from the simulated values shows
that, if our model is not a good match to the actual stellar
density model in the halo, our errors, as calculated using the
method in Section 5, could be underestimated by a factor of
three or more. The fraction of stars in each component is
particularly poorly measured compared to the uncertainties; the
optimizations for ¢ differ from the simulated values by 6-110.
These errors look worse than they really are because they are
measured with respect to a different smooth component. We
include a column in Table 4 that shows the number of stars in
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the stripe associated with each component. The density of stars
along a stream could be off by as much as 60%.

Nevertheless, the properties of the detected streams and the
general shape of the stellar spheroid (as measured by ¢g) are
generally similar to the simulation. All of the halo substructure
is immediately recognizable. The flattening of the spheroid is
surprisingly correct. The widths of the streams are approxi-
mately correct, the stream centers and distances are pretty
close, and even the angles at which the steams pass through the
wedge are easily matched with the correct stream.

In addition to checking the accuracy of the uncertainties, we
checked the accuracy of the optimizer in finding the highest
point in the likelihood surface. To do this, we ran one-
dimensional parameter sweeps for each of the 20 parameters in
our model. The sweeps seen in Figure 6 show the likelihood
surface for the test data with the Hernquist background. This
figure shows that each model parameter peaks either at, or close
to, the expected parameter value. Any small difference between
the peak in the likelihood surface and the simulated values can
be accounted for by the uncertainty introduced by the finite
number of stars available in our data. For the BPL parameter
sweeps in Figure 7, there are several parameters that have
extremely flat likelihood surfaces. In these cases, the optimizer
still seems to find an answer close to the peak of the likelihood.

In order to visually compare the results of our simulation to
the actual SDSS stripe 19 data (Figure 4), we present the
simulated data with a Hernquist background in Figure 8, and
the simulated data with the BPL background in Figure 9. The
simulated data figures (Figures 8 and 9) show three different
views of the data. The first row shows the components
generated by the test data simulator, and the combination of
those components. The second row shows a probabilistic
separation of the components by our model, given the
simulation parameters. Finally, the last row shows a resimula-
tion of the data using the fit model parameters. By resimulating
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Figure 6. Parameter sweeps in each of the 20 parameters for the simulated SDSS stripe 19 with the Hernquist plus thick disk background. A parameter sweep gives the
log(L) as a function of one of the variables, holding the other variables constant. The blue line represents a parameter sweep around the simulated parameters from
Table 4, and the red line represents the parameter sweep around the best results returned from MilkyWay @home, listed as “Fit” in Table 4. The simulated value for the
parameter is shown by the blue diamond, and the best likelihood in the parameter sweep around the simulated parameters is shown by the blue circle. Similarly, the red
diamond indicates the value of the parameter returned by MilkyWay @home, and the red circle represents the best likelihood found in the parameter sweep around the
result returned from MilkyWay @home. In the first row, we show parameter sweeps for the smooth background parameters. The next three rows show the parameters
for the Sagittarius stream (Sgr), the “bifurcated” stream (Bif), and Virgo, respectively. The best results will be produced if the parameter sweeps show a narrowly
peaked likelihood surface. Most of the panels show well-behaved slices through the likelihood surface, which is good. All of the sweeps show that both the returned
result from MilkyWay @home and the parameter sweep have the best likelihood in the same place. This means our optimizer successfully converged to a maximum in

our likelihood surface.

the stripe, we can visualize the model that the optimizer found
as the best fit to the data.

In each of these plots, the separated streams have the
appearance of streams, and the smooth component appro-
priately contains no substructure. It is especially interesting that
MilkyWay @home is able to determine, on its own, a set of
parameters that resulted in streams that look, by eye, the same
as those with the “correct” parameters for the wedge. More
evidence of this can be seen in Figures 10 and 11, which show
residual densities of the simulated data and resimulated fit data
from Figures 8 and 9. The BPL fits show that we will not easily
know whether or not the real data is a poor fit to a Hernquist
background. However, we will still be able to fit most stream
parameters (eight of the 18 stream parameters were within 2o
of the simulated values), even though a few might not be
correct within the calculated errors.

In summary, simulations show that in the case that our
background and stream models are close to the correct answer,
the resultant parameter fits can be trusted. If our background or
stream models are far from the correct distribution of stars, the
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uncertainties are underestimated, but the stream properties are
generally reasonable.

8. Discussion

Given that our tests support the validity of our algorithm in
determining the properties of large halo substructures, we now
discuss the results obtained from SDSS stripe 19.

Table 2 shows the similarity between our measurement of
the Sgr dwarf tidal stream leading tidal tail and those of
Belokurov et al. (2006) and Newby et al. (2013). The larger
difference between our position and that of Hernitschek et al.
(2017) can be explained by the fact that their position is not
exactly aligned with stripe 19; the Hernitschek et al. (2017)
results are about a degree and a half away from ours in v.
Newby et al. (2013) found that the stream position can vary up
to 11° in y and up to 3 kpc in distance between 2°5 stripes. The
discrepancies between the Sgr widths in Hernitschek et al.
(2017) and our results can be explained by their different
measurement methods. The Hernitschek et al. (2017) widths
are based on line-of-sight depth, which is prone to uncertainty
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Figure 7. Parameter sweeps in each of the 20 parameters for the simulated SDSS stripe 19 with the broken power law background. The blue line represents a
parameter sweep around the simulated parameters from Table 4, and the red line represents the parameter sweep around the best results returned from
MilkyWay @home, listed as “BPL” in Table 4. The simulated value for the parameter is shown by the blue diamond, and the best likelihood in the parameter sweep
around the simulated parameters is shown by the blue circle. Similarly, the red diamond indicates the value of the parameter returned by MilkyWay @home, and the
red circle represents the best likelihood found in the parameter sweep around the result returned from MilkyWay @home. In the first row, we show parameter sweeps
for the smooth background parameters. The next three rows show the parameters for: the Sagittarius stream (Sgr), the “bifurcated” stream (Bif), and Virgo,
respectively. Again, most of the panels show well-behaved slices through the likelihood surface. In this set of parameter sweeps, we also note the likelihood surface
around several parameters in the “Bif” row are very flat and the optimizer was still capable of finding the peaks.

from stellar distance uncertainty and stream orientation,
making this likely an overestimate of width. In addition, our
Sgr measurements are consistent with positions and distances
reported in N-body simulations and fits to data from sources
like Law et al. (2005), Belokurov et al. (2006), Newberg et al.
(2007), and Law & Majewski (2010), which all report a Sgr
leading arm distance between 20 and 30 kpc near the SDSS
stripe 19 data wedge.

The “bifurcated” stream results advance our knowledge of
the Sgr stream. Our results are inconsistent with those reported
in Hernitschek et al. (2017). They report a distance of 17 kpc,
which is quite different from our result of 48 kpc. Comparing
our results with the Newberg et al. (2007) results in Table 2, we
find our stream center results are close enough that the
differences, approximately 1.5 times our lo uncertainties,
could be purely statistical. However, we believe the results in
this paper are more accurate because Newberg et al. (2007) did
not account for the effects of completeness or the effects of
stars leaking into/out of the color selection box when
calculating distance. By neglecting these biases in the data,
Newberg et al. underestimated the distance to the “bifurcated”
stream. Our correlation (as discussed in Section 3.7 and given
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in Table 1) suggests that this would result in a measurement of
1 that is too large, which explains why our measured g is
smaller. Our “bifurcated” stream center is more consistent with
those of the Sgr trailing tail in the north Galactic cap, as
measured in Belokurov et al. (2006) (as branch C) and
Belokurov et al. (2014), and as simulated by Law et al. (2005)
and Law & Majewski (2010). From these sources, the Sgr
trailing tidal tail is expected to be between 40 and 65 kpc,
which is consistent with our result. This invites the question of
where the “bifurcated” stream is in this wedge. It is possible
that the “bifurcated” stream in the Belokurov et al. (2006) Field
of Streams image is the Sgr trailing tail. Previous measure-
ments of the “bifurcated” stream at the distance of the leading
tidal tail could come from the leading tidal tail itself.
Alternatively, there could be a “bifurcated” stream in the stripe
19 data wedge that was not fit by any of the three streams.
More work is required to solve this ambiguity.

If we are characterizing the trailing tail of Sgr, then our width
measurements could have implications for the shape and
properties of the Milky Way dark matter halo (Ibata et al. 2001;
Siegal-Gaskins & Valluri 2008; Ngan et al. 2016; Sandford
et al. 2017). Ibata et al. (2001) find that a wide tail for a stellar
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Figure 8. Stellar density from our simulated stripe 19 plotted in three different ways. In this figure, the color represents the density of MSTO stars per cubic kpc in a
1 kpc by 1 kpe by 275 pixel in the flattened, (all stars are added together in the v direction, so the volume of the stripe increases with radius from the Sun) face-on
stripe. Values of p and r in each stripe are indicated. In all three rows, the last panel shows the sum of the components in the first four panels. We show the smooth
component of the spheroid (background), the Sagittarius stream, the “bifurcated” stream, and the Virgo Overdensity. In the first row, the first four panels are the model
components that are added together to make the simulated stripes. In the second row, the first four panels are a probabilistic separation of the stars into each of the
model components, using the “correct” parameters used to simulate the wedge. Finally, in the last row, we resimulate the wedge using the parameters recovered from
the MilkyWay @home results and then separate the resimulated wedge into its model components. Using this method, we can visualize the model that the optimizer
thinks is the best fit to the data. All three methods yield similar results for each stream, which is as expected if the separation algorithm is successful.

stream is indicative of a flattened or oblate halo. Siegal-Gaskins
& Valluri (2008), Ngan et al. (2016), and Sandford et al. (2017)
present methods to determine the number of dark matter
subhalos and constraints on their mass by looking at the width
and gaps present in the tidal streams. In general, more gaps and
wider streams seem to correlate with larger and higher numbers
of subhalos in the dark matter halo. Because we measure a
width of 17.6 kpc for the trailing tail of Sgr, it could suggest an
oblate or a lumpy dark matter halo. Our measurements suggest
a stream that is a 47° FWHM across, at an Sgr lambda of 128°.
Given that lambda increases in the direction of the leading tidal
tail, starting at the dwarf galaxy, this is 232° along the trailing
tidal tail. For more information on the Sagittarius coordinate
system, see Majewski et al. (2003).
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The distance to the assumed Virgo Overdensity in Table 2 is
consistent with, but on the low end of, the distance found in
Juri¢ et al. (2008) of 620 kpc. Juri¢ et al. (2008) also suggest
that Virgo is over 1000 square degrees on the sky, which is
consistent with our close and wide model parameters of a 6 kpc
distance and 6kpc width. A o of 6kpc corresponds to a
14 kpc FWHM, which at 6 kpc away is 67° across. A circular
region of the sky with this width is 3300 sq. deg. Note,
however, that our width is from a cross section near the edge of
the overdensity, which makes this calculation quite uncertain.
Note also that this observed substructure is close enough and
wide enough that we might expect to see some stars associated
with this stream in the solar neighborhood. Duffau et al. (2006)
also suggest the stream is wide, taking up over 100 square
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Figure 9. Stellar density from our simulated stripe 19 with a broken power law background. This figure is similar to Figure 8, except using a different simulated data
set. In the first row, the first four panels are the model components, including the broken power law background, that make up the simulated stripes. In the second row,
the first four panels are a probabilistic separation of the stars into each of the model components using the “correct” parameters used to simulate the wedge. This
separation assumes a Hernquist background with parameters like those from our other simulated wedge. Finally, in the last row, we resimulate the stripe using the
parameters recovered by MilkyWay@home with a Hernquist background. The first four panels are the four components, and the last panel is a combination of all of
the stars. By resimulating the stripe using the recovered model parameters, we can visualize the model that the optimization found as the best fit to the data. Note that
MilkyWay @home is not able to faithfully reproduce the simulated background if the model that is being fit is not the same as actual stellar halo density distribution.
This is evident from the fact that the shape of the smooth component in the upper left panel shows significant extra structure at ;1 = 225° and much less at = 210°.
Because the Hernquist profile cannot reproduce this shape, the separation in the lower left splits the difference between these two densities; the streams are shaped
slightly differently to absorb or contribute stars as necessary. Note that the stream densities are, overall, remarkably robust.

degrees on the sky; they find a much more distant substructure.
Carlin et al. (2012) fit an orbit to the Virgo stellar stream and
present an N-body simulation of the stream that shows two
wraps of Virgo in the region we fit. The distances to the trailing
wrap of the stream’s orbit are consistent with our fits to the
Virgo Overdensity, while the leading wrap is closer to 15 kpc.
The Virgo Overdensity “stream center” we fit is several degrees
away from the plane of the orbit and has a higher density than
the N-bodies suggest. Our fits are close enough that we cannot
rule out the possibility that our structure is associated with this
fit of the Virgo stellar stream, but we also cannot conclusively
confirm that what we are seeing is the Virgo Overdensity tidal
stream as outlined by Carlin et al. (2012). Future analyses of
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the density substructure of the north Galactic cap will map the
MSTO density in the Virgo region, allowing us to address the
question of whether this large overdensity consists of multiple

tidal streams.

9. Conclusions

In this paper, we show the result of an updated version of the
maximum likelihood technique developed by Cole et al. (2008)
and Newby et al. (2013), using updated MSTO absolute
magnitude distributions from Newby et al. (2011) and then fit
both simulated data and real data from the SDSS. The major

conclusions are:
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Figure 10. Residual density between simulated stripe 19 and the resimulated
stripe 19. The color represents the residual density of MSTO stars per cubic kpc
in a 1 kpc by 1 kpc by 2°5 pixel in the flattened (all stars are added together in
the v direction, so the volume of the stripe increases with radius from the Sun),
face-on stripe. This residual is found by subtracting the combined model in
Row 3 of Figure 8 from the combined model in Row 1 of Figure 8. The
residual shows that these models are very similar.
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Figure 11. Residual density between simulated stripe 19 with BPL background
and the resimulated stripe 19 with a BPL background. The color represents the
residual density of MSTO stars per cubic kpc in a 1 kpe by 1 kpc by 2°5 pixel
in the flattened (all stars are added together in the v direction, so the volume of
the stripe increases with radius from the Sun), face-on stripe. This residual is
found by subtracting the combined model in Row 3 of Figure 9 from the
combined model in Row 1 of Figure 9. The residual shows these models differ
in two primary places. There is a blue stripe around 10 kpc followed by a red
stripe around 20 kpc at 135° < p < 180°. The other section that shows a
residual is between 25 and 45 kpc and 180° and 225°, which is dominated by
red. This section is red-dominated due to the corresponding region in the BPL
model, which has a large deficit of stars.

1. Our new model returns parameters that are consistent with
those used to create simulations, and is ready to use on real
SDSS data. Clean separations of all of the simulated
substructure in a simulated SDSS stripe 19 can be seen in
Figures 4 and 8, and the comparisons of simulated to
optimized parameter values can be found in Table 4.

2. With the inclusion of the absolute magnitude distribution
and selection efficiency from Newby et al. (2011), we fit
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the Sgr stream, the trailing tail of Sgr in the north, and a
third stream, which is consistent with at least some
measurements of the Virgo Overdensity. The fit density
parameters for these structures in SDSS stripe 19 can be
found in Table 2; the parameters from which the densities
can be more easily derived using Equations (22) and (23)
are listed in Table 3. The large width could have
implications for the shape of the dark matter halo.

3. The presumed Sgr trailing tidal tail in the north Galactic
cap is much wider than the leading Sgr tidal stream,
which has implications for the shape of the halo. This
stream could possibly be what is seen as the bifurcation
of the Sgr tidal stream in the Belokurov et al. (2006)
“Field of Streams” image. The trailing tidal tail has a
width of o = 17.6 kpc versus 1.0 kpc for the Sgr leading
tidal tail, in our preliminary SDSS stripe 19 data fits. The
distance (48 kpc) to the trailing tidal tail is much farther
than we initially expected for the “bifurcated” stream,
which has previously been reported to be 32kpc in
Newberg et al. (2007), 27 kpc in Belokurov et al. (2006),
and 17 kpc in Hernitschek et al. (2017). If there is a
separate “bifurcated” stream at the distance of the Sgr
leading tidal tail, it was not fit by MilkyWay@home as
one of the three streams. Fitting four or more streams will
be attempted in future work.

In summary, we have developed and tested an improved
algorithm for fitting stellar substructure in the Milky Way halo,
and demonstrated it on the data available from SDSS stripe 19
as well as on simulated test data. We provide preliminary
density information for the substructure fit in SDSS stripe 19.
We demonstrate our ability to correct for biases introduced
when streams are near the limiting magnitude of the survey,
and to separate overlapping substructures from each other.

Looking forward, this algorithm will be run on all of the
available SDSS data in the north and south Galactic caps. In the
north there are 24 stripes of data, and in the South there are five
stripes of data, each 2°5 wide. Each of these stripes will be run
through MilkyWay @home. Through this effort, we will use
SDSS turnoff stars to map the shape and density of the Milky
Way stellar spheroid, including its major substructures.
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